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Abstract— We propose a novel excavation (i.e., digging) tra-
jectory planning framework for industrial autonomous robotic
excavators, which emulates the strategies of human expert oper-
ators to optimize the excavation of (complex/unmodellable) soils
while also upholding robustness and safety in practice. First,
we encode the trajectory with dynamic movement primitives
(DMP), which is known to robustly preserve qualitative shape
of the trajectory and attraction to (variable) end-points (i.e.,
start-points of swing/dumping), while also being data-efficient
due to its structure, thus, suitable for our purpose, where
expert data collection is expensive. We further shape this DMP-
based trajectory to be expert-emulating, by learning the shaping
force of the DMP-dynamics from the real expert excavation
data via a neural network (i.e., MLP (multi-layer perceptron)).
To cope with (possibly dangerous) underground uncertainties
(e.g., pipes, rocks), we also real-time modulate the expert-
emulating (nominal) trajectory to prevent excessive build-up of
excavation force by using the feedback of its online estimation.
The proposed framework is then validated/demonstrated by
using an industrial-scale autonomous robotic excavator, with
the associated data also presented here.

I. INTRODUCTION

Excavators are the mostly widely-used one among heavy
machinery equipments at construction sites. Automation or
robotization of these excavators have received great attention
for a long time (e.g., [1]), since it can improve construction
efficiency via over-the-clock operation while eliminating
operator health, fatigue or safety concerns. It is becoming
equally challenging to find a skilled operator for excavators,
particularly in many fast-aging countries. With the advance-
ments of sensors, computing, communication and actuators,
the construction machinery industry now starts to embark
on the commercialization of this autonomous (or automated)
excavator, with some of its component technologies already
commercialized or very close to that (e.g., machine control
[2]–[4], machine guidance [5]).

In this paper, we focus on the excavation (i.e., soil
digging) operation of the autonomous excavators. Achiev-
ing this autonomous excavation, while maximizing digging
performance like an expert human operator, is challenging
since soil dynamics is too complicated to be captured by a
model compact enough to be useful for real-time control.
Prior motion planning results for the autonomous excavator
typically do not consider this soil dynamics and rather only
focus on the kinematic control of the excavator with the
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Fig. 1: Industrial autonomous robotic excavator, Doosan
DX380LC, customized with IMUs, LiDAR, cylinder pressure
sensor, RTK-GNSS sensors.

soil-interaction dynamics not taken into account [6], [7].
Some works incorporate this soil dynamics into the motion
planning, yet, only for simple straight line trajectory [8],
certain fixed-shape trajectory [9], or simplified trajectory in
three steps [10], [11], thus, not applicable to generate expert-
like complicated excavation trajectory.

To overcome this challenge related to the com-
plex/unmodellable soil dynamics, in this paper, we adopt
the data-driven/learning technique. In particular, we aim to
emulate the behavior of expert operators given the shape
of the terrain. More precisely, as a human expert devises
the (nominal) digging plan right after seeing the terrain, we
develop a technique of expert-emulating trajectory planning
as a function of geometric parameters (i.e., task parame-
ters, in this paper) of the terrain. In particular, we adopt
dynamic movement primitives (DMP, [12]), which utilizes a
virtual dynamics to “structure” the trajectory and is known
to preserve the qualitative shape of the trajectory and the
attraction to the ending point (e.g., transition to swing/dump
operation), thereby, substantially enhancing robustness and
safety against operational/environmental variability in real
practice while also providing high data-efficiency. We also
endow this DMP-based trajectory with the ability of emu-
lating expert human operators by learning the shaping force
for this DMP-based trajectory from the expert excavation
data with a neural network (MLP (multi-layer perceptron,
[13])). Moreover, to address underground uncertainty (e.g.,
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Fig. 2: Configuration of the industrial autonomous robotic
excavator, Doosan DX380LC

pipes, rocks), we also add, on this DMP-based expert-
emulating trajectory, the modulating force, which real-time
adjusts the trajectory to prevent excessive excavation force
build-up by feedbacking the estimate of excavation force. It
is noteworthy to emphasize that our proposed framework,
to be demonstrated with real machines [14], [15], where
some unstable behaviors can result in costly damages to
the machines or even in human casualty, is chosen with the
robustness and safety as the foremost requirements, which
we believe is utterly important for autonomous excavators,
as, for them, no intervention by a (sensory-rich) on-board
human operator is possible whatsoever. This also directs us
to choose the techniques of DMP and MLP instead of more
advanced/recent schemes, as they are known to be robust
and well-behaving in many real applications. The results
of this paper have been successfully demonstrated using
real construction machines [14], [15]. To our knowledge,
this current paper proposes the very first result of expert-
emulating trajectory planning and its real demonstration with
an industrial-scale autonomous robotic excavator.

The rest of the paper is organized as follows. System
description and some preliminary materials about DMP and
force estimation are introduced in Sec. II. Nominal exca-
vation trajectory learning from the expert operation data is
proposed in Sec. III, and its online modulation with the
real-time excavation force feedback explained in Sec. IV.
Experimental results to validate our proposed algorithm are
presented in Sec. V, followed by some concluding remarks
in Sec. VI.

II. PRELIMINARY

A. System Description

The autonomous robotic industrial excavator, we consider
in this paper, is the commercial Doosan DX380LC as shown
Fig. 1, which is customized with additional actuator (i.e.,
motors directly commanding the joystick to control the MCV
(main control valve [16]) and sensors (i.e., IMU (inertial
measurement unit) attached at each boom, arm and bucket
links to measure their angle, cylinder pressure sensors,
and RTK-GNSS (real-time kinetic global navigation satellite

systems) to measure the pose of the cabin, and a Velodyne
Puck VLP-16 LiDAR (light detection and ranging) sensor to
scan the terrain to excavate). See Fig. 2.

In this paper, we assume the excavator motion is only
within its sagittal plane, since, during the excavation, which
is the focus of this paper, the swing motion is typically not
involved. Further, here, we only consider the problem of
expert-emulating trajectory planning with the low-level joint
angle control already taken care of by manufacturer-provided
PI (proportional-integral) control with IMU-feedback. The
motion of the excavator can then be specified by θ =
(θboom, θarm, θbucket) ∈ R3, which defines a configuration
of the excavator in the sagittal plane (i.e., SE(2)). Another
configuration can be defined to be q = (px, py, φ) ∈ SE(2),
where px and py are the position and φ is the orientation
of bucket tip related to the inertia frame O, whose origin is
located at the floor-center of the excavator - see Fig. 2. With
no redundancy, we then have one-to-one mapping between
θ ∈ R3 and q ∈ SE(2). In the following, we will mostly
utilize q ∈ SE(2), while θ ∈ R3 only for the real-time
excavation force estimation.

B. Dynamic Movement Primitives (DMP)

DMP is widely used for learning and representing move-
ments in robotics [12] [17]. It expresses a trajectory as a
nonlinear external force applied to the unit mass critically-
damped system. In this paper, we assign scalar DMP dynam-
ics to each of px, py , both of which share the common clock
signal s ∈ [0, 1] with the following dynamics.

τ ṡ = −αss (1)

where τ > 0 and αs > 0 are parameters defining the
temporal scaling of s, and s(0) = 1. The scalar DMP
dynamics for each px and py then has the following form:

τ ÿ = αy(βy(yg − y)− ẏ) + f(s) (2)

f(s) = h(s)(yg − y0)s (3)

where y0 ∈ R is the initial point, yg ∈ R is the goal point,
αy , βy > 0 are the gains, and f(s) ∈ R is the shaping
force, which consists of a nonlinear function h(s) ∈ R and
spatial scaling factor yg − y0, with the goal-directed attrac-
tion guaranteed by multiplying a monotonically diminishing
clock signal s. Here, we relate the DMP dynamics only to
the behaviors of px and py , whereas that of φ determined
by the geometric relation between the bucket tooth and the
digging trajectory - see Sec. III-C. In this paper, we use
DMP with the shaping force f(s) to generate the (nominal)
expert-emulating excavation trajectory - see Sec. III-B.

C. Coupling Movement Primitives

DMP allows for online modulation through an additional
modulation force called the coupling term (or modulation
force, in this paper). The naive way for this is to directly
add a coupling forcing term into the acceleration levels of
the DMP [18], which however is known to possibly induce
overshoot behavior. To avoid this, the technique of coupling
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movement primitives is suggested to control the desired
dynamics like a PD (proportional-derivative) controller by
adding a coupling term to both the acceleration-level and
velocity-level DMP dynamics [19]. In this paper, we use this
technique by injecting the modulating force term C into the
DMP dynamics (2) s.t.,

τ ż = αy(βy(yg − y)− z) + f(s) + c2Ċ (4)

τ ẏ = z + c1C (5)

where c1 and c2 are constant gains - see [19] for more
details on the coupling movement primitives. In this paper,
we utilize this technique of coupling movement primitives to
real-time adjust the nominal trajectory with the excavation
force feedback - see Sec. IV.

D. Excavation Force Estimation

During excavation, it is possible to encounter with un-
derground objects (pipes, rocks, etc.), which cannot be pre-
dicted only by visually observing the terrain. These objects,
however, can pose significant perturbation to the autonomous
excavator, and, consequently, danger to that. To avoid this,
information about the excavation force is desired. To ob-
tain this, the most straightforward option is to attach F/T
(force/torque) sensor at the bucket joint, which is however
considered not yet viable due to the reliability and cost
concerns. Instead, in this paper, we utilize the momentum-
based wrench estimator [11], [20] to real-time estimate the
excavation force and adjust the nominal trajectory based on
that information. More precisely, consider the dynamics of
the excavator:

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) + Fssgn(θ̇) +Bθ̇ = τu + τext
(6)

where θ ∈ R3 is the configuration of the excavator, M(θ) ∈
R3×3 is the positive-definite inertia matrix, C(θ, θ̇) ∈ R3 is
the centripetal Coriolis vector, g(θ) ∈ R3 is the gravitational
vector, Fs ∈ R3×3 and B ∈ R3×3 are the Coulomb and
viscous friction matrices, and τu, τext ∈ R3 are the control
input and the excavation torque (to estimate), respectively.

Since the excavation speed is typically relatively slowly,
we can estimate the excavation torque τext using the
momentum-based disturbance observer [20], which is given
by

τext = K0(p(t)−
∫ t

0

(τu−τµ−β(θ, θ̇)+τext)ds−p(0)) (7)

with the generalized momentum p(t) =M(θ)θ̇, β = g(θ)−
CT (θ, θ̇)θ̇ and, τµ = Fssgn(θ̇) + Bθ̇. Note that (7) defines
a first-order low-pass-filter equation for τext, for which we
can directly measure θ, θ̇ with the IMUs and τu with the
cylinder pressure sensors, whereas all the other terms can be
identified via off-line parameter optimization. The excavation
force fext ∈ R3 in the q-space can then be computed by
fext = J−T

ext τext, where Jext ∈ R3×3 is the Jacobian from
the q-space to the θ-space, which is non-singular for the
range of excavator motion.

III. NOMINAL EXCAVATION TRAJECTORY PLANNING
WITH EXPERT EMULATION

A. Task Parameters Extraction

We extract geometric features that represent the shape
of the terrain (i.e., depth and slope), and use them as task
parameters as the input to the nominal excavation trajectory
planning. We choose to use these task parameters instead of
applying end-to-end learning algorithms directly to the point
cloud data (PCD) of the LiDAR sensor, since they typically
require very large amount of data for learning [21].

For this, we extract geometric features from a separate
feature extractor to learn with a small number of expert data.
Considering the motion of the excavator, the range of interest
(ROI) of the relevant PCD is defined to be 3∼11m in the x-
direction and -1.5∼1.5m in the z-direction - see Fig. 2. We
also assume the default terrain shape as the sloped terrain
with a irregular pit, the most common in construction sites.
Then, after flattening the PCD in the z-direction, the slope
surface of the terrain is extracted by the following fitting
operation in the (x, y)-plane:

y(x) = ax+ b− aH(x1 − x)(x− x1)
− aH(x− x2)(x2 − x)

(8)

where H(w) := d
dw max(w, 0) is the heaviside function,

x1, x2 are the initial and end points of the slop, and a, b are
the slope/offset parameters. We also fit the slope surface with

(a) (b)

Fig. 3: The acquired expert excavation trajectories (processed
data from eighteen data-set): (a) three rounds of consecutive
excavation in flat and two different angled slopes; (b) modi-
fied training trajectory matching goal position yg to equalize
spatial scaling.
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Fig. 4: An architecture of the learning and retrieving the
nominal trajectory.

the Gaussian function d exp(−(x − xo)
2/c) to extract the

depth parameter d and the deepest point xo of the excavation
terrain. We then choose the task parameters as the slope
and the depth of the terrain, that is, T = (θslope, d) =
(tan−1(a), d), which represent the terrain to excavate and
serve as the input for the nominal expert-emulating excava-
tion trajectory planning.

B. Learning Nominal Expert-Emulating Trajectory

The nominal expert-emulating excavation trajectory is
produced by using the learning from demonstration based on
the expert excavation trajectory data (each marked with its
corresponding terrain task parameters). The expert trajecto-
ries are acquired in the flat terrain and also from the terrains
with two different slopes (20.38 and 28.30 degrees) for two
consecutive rounds of digging as shown in Fig. 3a, from
which we can notice certain structured patterns. To learn this
pattern of the expert excavation trajectories, we utilize DMP,
whose high data-efficiency is well-suited for our purpose as
obtaining expert data for excavation is expensive and the
number of our data set is rather limited (i.e., two rounds ×
three slopes = total eighteen data set).

The acquired data was normalized to facilitate learning.
Temporal scaling is equalized among the nominal trajecto-
ries, and the sampling is executed in 800 steps with 100Hz
during 8 second-internal, the average working time of expert
data. To equalize the spatial scaling, a common goal is
deduced through optimization that minimizes the difference
between Euclidean distances from each initial position po ∈
R2 to the goal position pg = (pgx , pgy ) ∈ R2 by

min
pg,pr

n∑
i=1

abs(‖po − pg‖ − pr)

s.t. xl ≤ pgx ≤ xu
yl ≤ pgy ≤ yu

(9)

where pr ∈ R is the common distance between po (given
from the data) and pg , xu and xl are the upper and lower
bound of pgx , and yu and yl are that of pgy . We learn the

Fig. 5: Results of three times consecutive nominal trajectory
retrieving in the training terrains from left to the right - top:
flat terrain, middle: slope1, bottom: slope2

Fig. 6: Results of nominal trajectory retrieving for unseen
test task parameters - left: test degree, right: test depth

nonlinear term h(s) in the shaping force f(s) of (2)-(3)
except the term (yg − yo) and the clock signal s. Then, the
objective of the learning is to find a mapping function N :
(s, T ) → h(s). There are a variety of regression standards
for learning the nonlinear function h(s), and we apply a
supervised learning via neural network, MLP (multi-layer
perceptron) consisted of two fully-connected layers with 64
and 16 nodes each, that is known to be robust among similar
methods and can express the expert complicated/high-order
excavation trajectory in complex soil with the multiple
inputs.

The nominal trajectory generation of (px, py) for the
training data are shown in Fig. 5. The trajectories are similar
to that of the expert, suggesting proper leaning of the specific
structured pattern of the expert trajectories of Fig. 3a. For
each time-stamp, the RMS (root mean square) error for the
position yields 0.51m, and the dominant reason for the error
is that the initial position has an error of 0.42m. Moreover,
to validate the generalization performance for the unseen
terrain, the nominal trajectories for the test angle and depth
interpolated from the training set were evaluated shown in
Fig. 6.
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Fig. 7: Definition of bucket angle φ. (left) The bucket tooth
and headings coincide but the bucket collide with the ground.
(right) The bucket tooth and headings form the minimum
angle avoiding collision.

C. Retrieving Nominal Trajectory

Now, note that the nominal DMP-based expert-emulating
trajectory of Sec. III-B only specifies the motion for px, py ,
yet, the excavator possesses 3-DOF, thus, the redundancy
occurs. To address this redundancy (to resolve φ(px, py)), we
devise a bucket angle algorithm as follows. First, notice from
Fig. 7 that, if the bucket teeth simply align to the velocity
vector of the trajectory, the shaded part of the bucket will
collide or press against the ground in Fig. 7. To minimize
such interaction force, a bucket angle φ is defined as the
minimum angle between the bucket tooth and the trajectory
velocity vector while the virtual triangle surrounding the
bucket avoids the collisions as shown in Fig. 7. The algorithm
contains the assumption that all soil in the trajectory passed
is removed.

IV. FORCE-BASED ONLINE TRAJECTORY MODULATION

In this section, we acquire the excavation force data from
the experts and propose an online trajectory modulation
algorithm to prevent the excessive build-up of that excavation
force. Since the nominal trajectory is the open-loop trajectory
planning without considering interaction with the ground,
problems can arise from unpredictable objects under the
ground or various dynamic features of the terrain such as
densities, shear strength, and flow velocity scale. The goal
of the algorithm in this section is not to simply learn
the expert’s trajectory in position level but emulate the
expert’s force-based trajectory modulation technique, which
is assumed to be optimal. We find out from the interview
that the experts can recognize the external force on the
bucket through the excavator movement in response to the
joystick manipulation, and they modify the path in real-time
if excessive force occurs. Therefore, we prevent excessive
excavation force by acquiring the force patterns of experts
and emulate them in real-time. In the previous force-based
autonomous excavation studies, the force trajectory is defined
by an engineer’s intuition and is used for simplified trajectory
and phase switching [10]. On the other hand, we have a
remarkable difference in that we acquire the expert’s contact
force and generate a completely free-form trajectory planning
rather than a limited and simplified one.

Fig. 8: Raw external force data from experts, resampling
data,mean and variance between each data during excavation.
Top: flat terrain, bottom: slope terrain

A. Expert Force Trajectory

The external contact force data from experts acquired
consecutive three times digging on the flat and the two
types of slopes. We conduct a resample process and analyze
the excavation force of experts in normalized dimensionless
quantity, which is defined as Fxcv=‖F 2

x + F 2
z ‖/k with

normalized factor k. The noticeable feature of the expert
force trajectory is the trapezoid pattern maintaining constant
force as threshold in Fig. 8. The contact force threshold
shows E(Fxcv,flat) = 1.62, σ(Fxcv,flat) = 0.24 in flat
terrain , and E(Fxcv,slope) = 0.86, σ(Fxcv,slope) = 0.43
in slope.

B. Online Trajectory Modulation

We implement the coupling movement primitive in Sec.
II-C to modulate the trajectory online based on excavation
force. We assume that the excavation force decreases when
the excavation trajectory changes shallower perpendicular
to the ground. To satisfy invariance property in DMP, we
set the DMP coordinate that has the first coordinate as the
line of the initial and the goal position and the second
coordinate is perpendicular to the first coordinate. Fig. 9
shows that the modulating force C ∈ R2 perpendicular
to the ground and divided Cx and Cy along the DMP
coordinate (xDMP , yDMP ). Under the assumptions, the
following coupling movement primitive is formulated with
w = Fxcv − Fthreshold as

τ ż = αp(βp(g − y)− z) + f(T, s) + c2ĊDMP (10)

τ ẏ = z + c1CDMP (11)

C(s) =

{
w if w > 0

0 otherwise
(12)

CDMP (s) =

[
Cx
Cy

]
=

[
−C(s) sin(θDMP − θslope)
C(s) cos(θDMP − θslope)

]
(13)
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Fig. 9: Schematic of the coordinates of DMP dynamics and
online modulation strategy.

with state vector y ∈ R2 is the px and py relative to DMP
coordinate and z ∈ R2 is the velocity of the state. We
consider only positive force feedback for excessive force
respecting in (12).

V. EXPERIMENT

We evaluate the suggested algorithm with the customized
Doosan DX380LC described in Sec. II-A. We conduct the
three times consecutive digging in flat and two different
angle of slopes. One slope angle is 26.05 degrees which
is interpolated task parameter of training data and the other
is 32.2862 degrees extrapolated task parameter. The general-
ization performance of the algorithm is verified through the
interpolated and extrapolated task parameters.

The embedded PC for trajectory planning utilizes Intel
i7 2.7GHz NUC and composed ubuntu-based ROS architec-
ture. CAN communicates with the excavator in the 100Hz
communication cycle, obtains the excavator configuration
information and transmits the trajectory planning information
in q. LiDAR is connected to Nvidia Jetson TX2 and transmits
PCD information to NUC PC in the 10Hz period. We set the
threshold of the excavation force as Fth,slope=1.0 × 105N
and Fth,flat=1.5 × 105N from experts force data. Hyper-
parameters for coupling movement primitives are assigned
as αp=5.0, βp=

√
20, c1=0.03, and c2=0.008.

A. Experimental Results

The planned trajectories in the flat terrain are shown in
Fig. 10. As shown in the figure, it adapts to changes of
the depth from the consecutive excavations and properly
generates deeper trajectories in series. Fig. 11 shows that
the force trajectory in flat terrain has a trapezoidal pattern
similar to the expert pattern that maintains a constant force
at the maximum. In the flat terrain, the excavation force Fxcv
is under the threshold, so the algorithm plans the trajectory
without online modulation for excessive excavation force.
Weighing after digging measured with a momentum based
observer marks 3.03 tons, 89.9% of the full bucket, and it
indicates sufficient performance in terms of productivity.

The nominal and modulated trajectory for the slope is
shown in Fig. 12. The blue dotted lines are the nominal
trajectories from the extracted task parameters and the red
solid lines are the modulated trajectories based on the esti-
mated excavation force. Comparing with the red plot in Fig.
13, excavation forces exceed above the threshold at the first

Fig. 10: Results of digging in flat terrain- left: plot of the
three trajectories which operates deeper, right: each trajectory
with y-dir flatten PCD before digging. The initial point is a
yellow star.

Fig. 11: External force data Fxcv during digging in flat
terrain.

and second digging in both terrains, and the trajectories are
modulated to the shallower direction than nominal.

Moreover, Fig. 13 highlights the performance of force
feedback modulation compared to the nominal trajectory.
Modulated red plots have a trapezoidal pattern with a similar
tendency to expert force trajectory, while the nominal trajec-
tories have a pattern that peaks at much higher excavation
forces above the threshold. The maximum excavation forces
of nominal trajectories are 1.68 and 1.93 in each slope, and
that of modulated trajectory are 1.25 and 1.38. Accumulated
error for the force above the threshold from the nominal
trajectory shows 1.72 and 2.40 times greater in each slope.
This result shows that the suggested algorithm prevents
problems such as overturning due to excessive excavation
force and enables to emulate the optimal force pattern similar
to the expert.

VI. CONCLUSION

In this paper, we propose a novel excavation trajectory
planning algorithm, which can effectively learn and retrieve
the expert’s kinematic and dynamic strategy. The algorithm
learns the expert position trajectories interacting with com-
plex soil model through DMP via neural network structure,
so guarantees safety and robustness. Also, online trajectory
modulation based on the estimated excavation force pre-
vents excessive deep excavation and adapts to changes in
the dynamic properties of the ground. We implement our
approach to customized excavator and evaluate in the flat and
slope terrains. Experimental results show that the suggested
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Fig. 12: Nominal trajectories and online modulating trajec-
tories in slope 1 (top) and slope 2 (bottom) for consecutive
three times excavations. The green area is digging inside the
ground and the rest is booming up to designated goal point.
The initial point is a yellow star.

Fig. 13: External force results on slopes. The blue dotted
lines are the results of the excavation force without feedback,
and red lines are the excavation force results of considering
coupling feedback. (top) slope 1, (bottom) slope 2.

algorithm can generate the trajectory which follows the both
expert’s position and force trajectory with generalization
performance ensuring sufficient excavation weighing. The
possible next step for this work is to develop an algorithm
to find the optimal coupling gain suitable for the excavator
system and improve the performance from the extrapolated
task parameters.
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