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Abstract— We propose a novel real-time algorithm to esti-
mate the full three-dimensional individual tire forces (i.e., verti-
cal, longitudinal as well as lateral) of a car-like rearwheel-driven
four wheel wheeled mobile robots equipped with onboard
navigation sensors and wheel encoders. The key enabling idea
for this is to utilize the tire model (i.e., the magic formula) in a
feedback manner on the framework of the constrained Kalman
filtering to render the tire force estimation: 1) more accurate
as compared to the typical tire force estimation techniques
neglecting the tire-road interaction; and 2) more robust as
compared to the results adopting the tire model, yet, only in an
open-loop manner. Our proposed algorithm, while performing
this full tire force onboard/real-time estimation, also provides
the estimation of: 1) tire-road friction coefficient; and 2) torque
inputs of the rear left and right wheels, which are connected
via differential gear. Simulations with CarSim and outdoor
experiments are performed to validate the proposed estimation
algorithm.

I. INTRODUCTION

Recently, there has been increasing interest in high-speed
or dynamic WMRs (wheeled mobile robots), since it can
not only significantly enhance the operation speed of the
conventionally slow-speed/kinematic WMRs (e.g., [1], [2]),
but also can allow us to attain some interesting behaviors
impossible to those slow-speed/kinematic WMRs (e.g., [3]-
[5]). This dynamic WMR can also serve as a platform to
investigate many important aspects of autonomous driving
and to develop solutions for that as well in a safer and more
affordable manner (e.g., driving in friction-limit [6], turn-
over prevention [7], rough-terrain dynamic driving [8], etc.).
To attain such high-speed operations of this dynamic WMR,
it is then important to precisely estimate the individual
tire-road interaction forces to monitor them not to exceed
certain threshold to prevent (often unsafe) slippage (e.g.,
[3], [6]) or to control them in certain way to intentionally
trigger/maintain the slippage (e.g., [4], [5]). This should also
be done by using only onboard sensors and in realtime for
their real-world adoption. Many strong techniques and results
have been proposed for this onbaord/real-time tire force
estimation and also its related tire-road friction estimation
[9]-[14]. However, the majority of them, instead of relying
on some accurate nonlinear tire models (e.g., Pacejka model
[15], Doughoff model [16], brush model [16]), which are
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known to properly capture the (crucial) effects of the slip
on the tire-road force, rather compute the sums of some
individual tire forces (e.g., total front tire force via bicycle
models: e.g., [13]) and split them to individual tire force
rather in an ad-hoc manner (e.g., proportional to vertical
tire force [9]) while neglecting such important tire-road
interaction model.

Particularly difficult to estimate is the lateral tire force,
since, in contrast to the case of longitudinal tire force, which
can be rather more straightforwardly determined for each
wheel by using their respective wheel spin dynamics (with
its acceleration sensing via, e.g., encoders) with the known
(or estimated) wheel torque input, the lateral tire force does
not allow us to utilize such wheel-level dynamics as the
wheel-spin dynamics. This lateral tire force, however, is
crucial to attain such behaviors as drifting [3]-[5] or to
prevent side-way slip during dynamics driving [6]. Only
few results have proposed techniques to estimate this lateral
tire force dynamics (e.g., [9]-[11]), yet, again, the tire-road
interaction model is neglected and some ad-hoc measures
are used to determine the (individual) lateral tire force (e.g.,
[9]). The tire-models are adopted in [10], [11] to estimate
this lateral tire force, which, however, are fully exposed to
the uncertainty of their adopted tire (Doughoff or brush)
model, with no such feedback correction loop to reduce the
uncertainty effect as done in typical state estimation with
sensor feedback.

In this paper, we propose a novel real-time algorithm to
estimate the full three-dimensional individual tire forces (i.e.,
vertical, longitudinal as well as lateral) of a car-like rear
wheel-driven four wheel WMR with rear-wheel differential
and also equipped only with typical onboard sensors (i.e.,
wheel encoders, INS (inertial navigation system) or IMU
(inertial measurement unit), and GNSS (global navigation
satellite system)). The key enabling idea for this is to utilize
the tire model (i.e., the magic formula) in a feedback manner
on the framework of the constrained Kalman filtering [17],
so that the tire force estimation can be: 1) more accurate
as compared to, e.g., those tire-model-less techniques [9],
[12]; and also 2) more robust as compared to, e.g., the one
adopting the tire-model, yet, only in an open-loop manner
[10], [11]. Our proposed algorithm, while performing this
full tire force onboard/real-time estimation, also provides the
estimation of: 1) tire-road friction coefficient; and 2) torque
inputs of the rear left and right wheels, which are connected
via differential gear.

More precisely, our proposed estimation algorithm con-
sists of the following three steps: 1) tire force estimation



Kalman filter (TF-KF), which estimates the full (i.e., vertical,
longitudinal and lateral) tire forces of each wheel and the
rear left and right wheel torque inputs using the information
(i.e., output) of the body and wheel-spin accelerations, the
vertical tire forces (computed via the effective mass approach
[9], [18]), and the lateral tire forces (computed via the lin-
earized tire model); 2) friction coefficient estimation, which
estimates friction coefficient using the Bayesian hypothesis
selection algorithm [12] by using the tire forces priorly esti-
mated by the TF-KF; and 3) tire model constrained Kalman
filter, which optimally projects the estimated longitudinal and
lateral tire forces onto the accurate tire model with the uncer-
tainties of the estimated tire forces and the tire model taken
into account on the framework of the constrained Kalman
filtering (CKF) [17], while its results is fed back to the
TF-KF, completing the feedback-loop, thereby, substantially
improving robustness and accuracy of the estimation (see
Sec. IV). We call our estimation framework TFF-CKF (tire
force and friction coefficient constrained Kalman filtering).
This TFF-CKF also stands upon the standard state estimation
federated Kalman filter (FKF) [19], [20], which estimate the
position, velocity, attitude and the biases of the IMU.

The organization of this paper is as follows. Section
IT briefly describes the system and implemented sensors.
The proposed TFF-CKF is provided with its observability
analysis in Section III. In Section IV, the proposed TFF-CKF
are verified with the CarSim based simulation and outdoor
experiments. Finally, the conclusion of the paper is drawn in
Section V.

II. SYSTEM MODEL AND SENSOR
CONFIGURATION

In this section, we provide the system model and sensor
configuration of WMR which are used for the proposed tire
force and friction coefficient estimation algorithm utilizing
the constrained KF (TFF-CKF). The WMR considered in
this paper is the most common rearwheel-driven (RWD)
vehicle which has one actuator and a differential gear for
the rear wheels. The front wheels do not have any actuator
and can be steered using a steering wheel. Onboard sensors
(e.g., an INS, an encoder for each wheel, and a GNSS
receiver) are implemented on the WMR to estimate the state,
tire forces, and friction coefficient. The INS, encoder, and
GNSS receiver are installed at the center of gravity (CoG)
of the WMR, the rotation center of each front wheel, and
the top of the WMR, respectively. See Fig. 1 for the sensor
configuration.

To formulate the dynamic equations of the WMR, the
global and body frames are defined. The global frame {G}
has the origin at the center of the Earth, and the body frame
{B} has the origin at the CoG of the WMR as shown in
Fig. 1. In {B}, the tire forces of the wheels are defined as
depicted in Fig. 1. The index i € A (= [If, f, Ir, 1r]) is
defined to indicate each wheel of the WMR, where If, rf,
Ir, and rr represent the left-front, right-front, left-rear, and
right-rear wheels, respectively.
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Fig. 1: System and sensor configuration of a RWD WMR.

Using the definitions of the frames and tire forces, the 6-
degree of freedom (DOF) dynamic equations of motion are
expressed as

ItOtQB + QB X ItOtQB = ZI‘ZB X F,fg (1)
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where Zyo; € R3 and myoy are, respectively, the inertial matrix
and the mass of the WMR. The vector FiB €RN3 is the three-
dimensional tire force vector of the i wheel in {B}, and g®
is the gravity vector in {B}. The vector r? =[r? r¥ r?|T e R?
is the relative position vector from the CoG of the WMR to
the contact point of the road and the ¢ wheel as shown in Fig.

1. The angular acceleration of the WMR QB € R3 can be
obtained by differentiating the gyroscope measurements [21],
and a® € R3 represents the accelerometer measurements. The
quantity V5 is the velocity of the WMR in {B} which can
be obtained using the onboard sensors. The 6-DOF dynamic
equations can be used as the measurements to estimate
the tire forces, yet the signal to noise ratio (SNR) of the
differentiated gyroscope measurements are too small to be
used in practice. Therefore, the proposed TFF-CKF do not
use the rotation dynamic equation which is expressed in (1).
The tire forces are observable using the proposed TFF-CKF
without the rotation dynamics in (1) as shown in Section I'V.
Yet, using the rotation dynamics is one of our future work
to increase the accuracy. The proposed TFF-CKF also uses
the wheel dynamic equation as the following.

Iwheeleheel,i = Ty —Teff" Fizv (3)

where Zyheets Cwheelis Ti» and F° are, respectively, the



moment of inertia, differentiated angular velocity measure-
ment, input torque, and longitudinal tire force of the ¢ wheel.
The effective radius of the wheels is notated with 7. ;. The
encoder measurement {),peer; should be differentiated to
obtain the differentiated angular velocity. Typically, the SNR
of Quheer,; is high enough to be used in practice, because
the magnitude of the measurements from an encoder is much
greater than the magnitude of the noise. The details of the
proposed TFF-CKF using the above dynamic equations are
provided in Section III.

For the better performance, the accelerometer and gy-
roscope measurements are compensated with the estimated
IMU biases using the federated Kalman filter (FKF) [19],
[20]. As it is shown in Flg 2, the FKF provides the estimated

V @ b, bQ] and the estimated state error
to the proposed TFF-CKF using the onboard

sensors, where Pg V e ba, and bQ are, respectively,
the estimated posmon, Velomty, attitude, accelerometer bias,
and gyroscope bias. Please see [19], [20] for the details of
the FKF.

state X,,, = [
covariance 2

III. TIRE FORCE AND FRICTION COEFFICIENT
ESTIMATION ALGORITHM

The proposed TFF-CKF has three steps as shown in Fig.
2. The first step is estimating the tire forces (e.g., the
longitudinal, lateral, and vertical tire forces) using the pro-
posed tire force estimation algorithm using the KF (TF-KF)
with the estimated state, dynamic equations, and onboard
sensor measurements. While using the existing algorithms to
estimate the tire forces, the vertical tire forces are observable
using the effective mass approach as proposed and verified
empirically in [9], [18]. However, the lateral tire force of
each wheel is unobservable as highlighted in [9] and [15].
To estimate all the tire forces of each wheel, we assumed that
the lateral tire forces can be estimated using the linearized
tire model in this step. The details of the linearized tire model
is described in III-A. The estimated tire forces using the
proposed TF-KF contains errors due to the effective mass
approach and the linearized tire model. Therefore, we em-
ployed the constrained KF (CKF) using the tire model (magic
formula) [15], [16] to improve the estimation accuracy of the
longitudinal and lateral tire forces. The friction coefficient
is essential to extract the longitudinal and lateral tire forces
from the tire model, so the proposed TFF-CKF estimates the
friction coefficient utilizing the Bayesian hypothesis selection
algorithm similar to [12] at the second step. The final step is
projecting the estimated tire forces at the first step onto the
tire model using the CKF, and feedback that information to
the proposed TF-KF to substantially enhance the accuracy
and robustness of the estimated tire forces.

A. Tire model

Before the proposed TFF-CKEF, a brief summary of the tire
model [15], [16] and the linearized tire model are provided
in this subsection. The tire model is a function that is
constructed with highly precise empirical data, and the tire
model provides the longitudinal and lateral tire forces. To
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Fig. 2: A block diagram of the proposed TFF-CKF to estimate the
tire forces and friction coefficients.
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obtain the longitudinal and lateral tire forces from the tire
model (e.g., F%;,, and F,; . respectively), the vertical tire
force F7, slip ratio s;, slip angle «;, and friction coefficient p
are required according to the combined slip theory [22]. The
vertical tire forces can be expressed with the accelerometer
measurements using the effective mass approach [9], [18].
The bias compensated accelerometer measurements a®(c
R3)=aB+gB+Q° XVB—BQ =[a® a¥ a*]" are used for the
vertical tire forces estimation to improve the performance,
where the bias compensated gyroscope measurements Q° (€
R3)=QF —bg, b, € N3 is the estimated accelerometer bias,
and by € %3 is the estimated gyroscope bias. The vertical
forces are expressed as [18]
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The slip ratio and angle can be calculated using the estimated
velocity of the WMR and measured velocity of each wheel
Vo.,i. The estimated slip ratio §; and slip angle &; are defined
as
k] = _VoilFl— (V2R AV k) ®)
Si = ~ B
max (Vo i[k], VE[k]+ AV ;[K])
;9
[k]) )

] = VREAVE [
¢ max (Vo ;[k], VB[k] +AVS,
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Fig. 3: The magic formula tire model and the linearized tire model
for the lateral tire forces.

where V7 and VyB are the estimated longitudinal and lateral
velocity of the WMR in {B} which can be obtained with

. o9 . .
the estimated velocity V usmg the FKF and the coordi-
- Q
nate transformatlon matrix Cg, ie., VB cEn ¢(1,:)V" and

V = CB (2, )V Note that the lever arm effect [23] is
compensated for adding AV ; and AVy from VB and VB
respectlvely, in (8) and (9), where [AVO i AVO s AVET=

a° x 2 and the lever arm vector F° = [ ¢ rZ+rers|T. The
frlctlon coefficient is essential for the tire model and it can
be changed while driving. Therefore, we cannot obtain the
tire forces using the tire model before the friction coefficient
is estimated. Therefore, a linearized tire model is proposed
to estimate the lateral tire force of each wheel without the
friction coefficient. The linearized tire model for the lateral

tire force Fz ire 15 defined as

Y D;+aq
1,tire
Qmaz 02

(avitas)

= ,u~sign(ai)~min< ,Di—i—al) ,
where D; is the peak of the tire model which is a function
of F?, cumag 1s a slip angle that has the maximum tire force,
and aq and as are the offset parameters from the tire model.
Fig. 3 shows the tire model and the linearized tire model. The
sum of the lateral tire forces can be estimated as m;,;a?. To
estimate the lateral tire force of each wheel, the sum of the
lateral tire forces are distributed as

FY.

= itire _

Fiy = Wmtota‘% (10)
ZjeA J,tire

The friction coefficients in the denominator and nominator
of (10) are canceled out, so we can estimate the lateral tire
force of each wheel without the friction coefficient using the
linearized tire model.

B. Tire Force Estimation

The tire force and torque vector F € R4 of the WMR at
the k-th time step is defined as F[k]=[Ff Fif F¥ Fif F! FY
F! F{ Fi F; F F7 7 7]", where 7; is the input torque of
the ¢+ wheel. Note that torque inputs of the front wheels are
not included in the tire force and torque vector, because the
system is a RWD WMR as described in Section II. See Fig. 1
for the definitions of the tire forces and torque inputs. Using
the fact that the tire forces increase or decrease continuously,
the tire force and torque vector at time step k+1 can be
approximated to F[k] when the time interval is small enough.

With this approximation, we can express the system model
equation for F similar to the random walk model in [9], [12]
as

Flk+1] = F[k] + wglk], (11)

where wr ~ N (0,Qp) is the process noise which is related
to the changed tire forces during the time step k to k+1. The
CarSim simulation results in Sec. IV show that the system
model equation in (11) works adequately for the proposed
TFF-CKF. Then we can estimate the time propagation of F
using the following equation.

F [k+1] = F[k].

As it is discussed in Section II, differentiated gyroscope
measurements have large errors. Thus, we use (2) yet not
(1) to found the measurement equation for the proposed TF-
KF. The lateral and vertical tire forces of each wheel can
be estimated using (10) and (4)-(7), respectively. The first
column of (2) and (3) are used to estimate the longitudinal
tire forces, and the torque inputs 7, and 7, are equal due
to the differential gear attached to the both rear wheels.
Consequently, the measurement equation for the tire force
and torque vector at time step k is founded as

mt0§(i$[k]
Iwheelnwhee k]
zrlk] = | (R Y EY R
z 2 21T
[Ef Frf F rr]
0
= HpF[k]+vEe[k], (12)
where
Hr1 Hprz Oixa Oixe
Hrz Ouxs Oyxs H}A
Hr = Hrs Hrpeg Osxsa Osxo |,
Osxa Osxa Iixa  Ogxo
Oixs Oixa Oi1xa Hpy
HF71 = [COS(Slf COSé}f 1 1],
Hp, = [ —sindy —sinds 0 0 |,
Hrs = —repf-Iixa,
Hry = [ O2x2 Ioya |,
I sinélf 0 0 0
_ 0 sinds 0 O
Hrs = 0 0o 0 0|
0 0 00
[coséy O 0 O
_ 0 cosds O O
Hee = 0 0o 1 01’
0 0 01
Hps = [1 -1],

Q= [Qwheemf Q'wheel,rf Qwheel,lr Qwheel,rr]T, Oa><b is the zero
matrix of size [axb] and Iy, is the identity matrix of size
[axb]. Exploiting the standard KF, the measurement update



of the tire force and torque vector is expressed as

Splk] = Splk—1]+ Qp, (14)
Srlk] = HpSp[k|HL + Rp,

Kp[k] = SpMHESE'[K],

Flk] = F [k]+Kplk](zplk] —HpF [k]), (15)
Splk] = (lhaas — Kp[kHp)S gk, (16)

where 2; e RIXIL G c RIGXI6 K e RUXI6 | e pld,
and Xy € R4*4 are the error covariance of the time
propagated tire force and torque vector, the error covariance
of the tire force and torque residual, the tire force Kalman
gain, the estimated tire force and torque vector, and the
error covariance of the estimated tire force and torque vector,
respectively. The covariance of the measurement noise Rp
is calculated by using the Taylor series of the measurement
equations in (12). The estimated tire force and torque vector
F provides the estimated tire forces of each wheel, i.e., F v
Fly and F7, and F is used to estimate the friction coefﬁcwnt
in the next subsection.

C. Friction Coefficient Estimation

Typically, the magnitude of the friction coefficient is
between 0.1 and 1.1, i.e., 0.2 for the ice, 0.5-0.7 for the wet
concrete, and 0.8-1 for the dry asphalt/concrete [24]. Using
this property of the friction coefficient, the n-th candidate of
the friction coefficient y,, can be defined between 0.1 to 1.1,
and then the conditional probability Pr (un|FI7y) with F7,

F/, and F? is expressed as

ey p(E ) Pr (1))
Pr(un [ k) =y o (I7)
S (B Rl ) Pr [ 1))
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where N is the number of the candidates and A is the nor-
malization factor. The expression (17) and (18) are derived
using the Bayesian rule [12]. Different from the Bayesian
hypothesis selection algorithm in [12], we give weights
inverse proportional to the estimated error covariances of
the longitudinal and lateral tire forces while calculating

the likelihood p (Fzy[kﬂpn) as expressed in (18). With

Pr(un\f?x’y), the estimated friction coefficient [ at the time
step k is expressed as [12]

w#im@ﬁ”mw

D. Tire Force Update and Feedback Using Tire Model

The estimated tire forces using the proposed TF-KF con-
tains errors due to the effective mass approach and the
linearized tire model. To compensate these errors, the tire
model and estimated friction coefficient are used in this
subsection. The tire model provides highly precise empirical
data, so the estimated tire forces F should satisfy the follow-
ing constraints d which is founded using the tire model.

dk] = DF[k]+vp, (19)
where
[ FE e (Gulk], ], EE K], AlK)
Ff tive(Sut[k], uelK], FE[R], A[k])
EiE tive (Su[K], due[K], FiZ (K], A[K])
) | Frelelf] 6], B 16, Al
Ff pive (Sulk], duc[K], FF[K], A[K]) |
E?,tire(grf{k}v &rf[k]’ Aé [k]v ﬂ[k])
ir tire (Sue[k], GuelK], FER], A[k])
L Bt tive (SulK], G (K], FETR), ilR]) |
D = [Isxs Ocxs |,

and vp ~N(0,Rp) is the constraint noise which is gener-
ated due to the noises in 3;, &;, Ff, [t. The constraints in
(19) do not have the information of the vertical tire forces.
Yet, the constraints of the vertical tire forces are not essential,
because the vertical tire forces can be obtained from F. Then
the updated tire force and torque vector F' and the error

. S .
covariance of 3 using the CKF is

Kilkl = Sp(Kp" (DERKDT +Rplk])
PR = W[k - K} (Dﬁ[k}—d[k]), (20)
Splk] = (s — KHED)S R[], 1)

where 3 F 1s the error covariance of the estimated tire
force and torque vector. The updated tire force and torque
vector Fr is the projection of F onto the tire model based
constraints in (19), and the expression (20) and (21) are
derived to estimate the tire force and torque vector with
minimum mean square error (MMSE). To estimate Rp =
diag([Rp,1 Rp.2 Rp3 Rp4]), the variances of §;, &, Ff,
and [ are required. The variance of Ff can be obtained
using 3, and it is clear that the probability density function
Pr(1u,|F"") can be used to estimate the variance of 7.
However, estimating the variances of §; and &; are difficult,
because the equations for §; and &; are highly non-linear
as expressed in (8) and (9). Therefore, we use the unscented
transformation (UT) [25] with the estimated error covariance
of the velocity in (16) and the covariance of the gyroscope
measurement noise to calculate the variances of §; and
¢;. With the Variances of §;, &, Ff, and /i, which are,
respectively, 62, 65 ;, 62, and 65, we can use the UT
to estimate Rp. Note that the estimation errors due to the
effective mass approach and the linearized tire model in F
can be reduced using the proposed TFF-CKF, because the



Fig. 4: Examples of the simulated trajectories in CarSim. Blue and
red car follow circular and S shape trajectories, respectively

proposed TFF-CKF optimally projects F onto the tire model
using the error covariance of F and the uncertainty of the tire
model Rp. As it is depicted in Fig. 2, the proposed TFF-CKF
feedback the estimation results of the CKF to the proposed
TF-KF, so the time propagation of the tire force and torque
. . ~+ S
vector can be estimated by substituting F and X . instead
of Fand 3 r in (12) and (14), respectively. The estimation
accuracy of the tire forces and friction coefficients can be
improved when the updated tire force and torque vector is
used for the time propagation. With the updated tire force and
torque vector P [k], more accurate F [k+1] and F[k+1]
can be obtained utilizing (12) and (15), respectively. The
estimation performance of the friction coefficients is also
closely related to this accuracy of F[k—i—l]. Therefore, we can
obtain more accurate friction coefficient with the updated tire
force and torque vector. See Section IV for the estimation
results of the tire forces and friction coefficients using the
proposed TFF-CKF.

IV. SIMULATION AND EXPERIMENT RESULTS

In this section, simulation and experiment results of the
proposed TFF-CKF are provided. For the simulation, the
CarSim software which is widely used in the vehicular area
and also for high-speed WMRs is used to generate the true
tire forces and torques and sensor measurements. A RWD
WMR which has the same sensor configuration in Fig. 1
is implemented for experiments, and the real sensor data
from the implemented RWD WMR is used to verify the
proposed TFF-CKF. The simulation and experiment results
are described in Sec. IV-A and IV-B, respectively.

A. CarSim Simulations

The D-class Sedan vehicle model which is provided in the
CarSim software is selected and modified as a RWD WMR
in Section II. The sprung mass and unsprung mass of the van
are, respectively, 1370Kg and 160Kg, and the roll, pitch, and
yaw inertia of the sprung mass are, respectively, 671.3Kg-m?,
1972.8Kg - m?, and 2315.3Kg-m?2. The WMR considered in
this paper do not have suspensions, so we use suspensions
with high stiffnesses (e.g., 385N/mm for each suspension)
to reduce their effects. The measurement noise covariance
matrices are defined based on the specifications of the real
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Fig. 5: Estimation errors of the longitudinal and lateral tire forces.

onboard sensors. For the INS and GNSS measurements, the
specifications of the Advanced Navigation Spatial is used. An
encoder implemented at each wheel generates 1024 pulses
per revolution to measure the angular velocity of the wheel,
and the standard deviation of the encoder measurement noise
is assumed as 10 pulses per second.

The conventional PID controller is employed to generate
the steering angle and torque inputs with the current ve-
locity and yaw rate of the WMR. The gains of the PID
controller are empirically selected based on the simulations
with various desired trajectories generated to have circular
or S shape as shown in Fig. 4. A plain concrete road
with the friction coefficient ;4 = 1 is used to verify the
estimation performance of the proposed TFF-CKF. To apply
the effect of the modeling uncertainty, modeling errors with
0.5% x (true value) standard deviation are added to the mass,
moment of inertia, and position of the CoG and wheels. The
performance of the proposed TFF-CKF is analyzed using
264 number of simulations.

To evaluate the tire force estimation performances of the
proposed TFF-KF, the estimation errors of the longitudinal
and lateral tire forces (e.g., e =F" " —F¥ and ! = F¥'" —
F}, respectively) are calculated using the true tire forces in
{B}, F*, F}, and F7, from the CarSim software. The CKF
of the proposed TFF-CKF is used after the error covariance
of the estimated velocity is converged (e.g., after 3.2s),
because the estimated slip ratio and angle have large errors
before the estimated velocity of the WMR is converged.
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Fig. 6: Estimated torque inputs and histogram of the estimated
friction coefficient errors.

Fig. 5 shows an example of the longitudinal and lateral tire
force estimation errors, and the estimated tire forces using
the proposed TFF-CKF has the best performance after the
friction coefficient is converged (e.g., after 5.5s). One of the
recent existing tire force estimation algorithm [9] estimates
the front and rear lateral tire forces using the 3-DOF bicycle
model, and the estimated front and rear lateral tire forces
of the 3-DOF bicycle model are distributed using weights
which are proportional to the estimated vertical tire forces.
The lateral tire force estimation performance of the proposed
TFF-CKEF is better than the tire force estimation algorithm
in [9], because the proposed TFF-CKF does not use only
the estimated vertical tire forces yet also the estimated slip
angles as expressed in (10). The tire model has errors due
to the estimation errors of the slip ratio, slip angle, vertical
tire force, and friction coefficient as shown in Fig. 5, yet the
proposed TFF-CKF adequately combine the information of
the estimated tire forces using the proposed TF-KF and the
tire model.

The estimated and true rear torques are shown in Fig. 6,
and the estimated torques shows that the proposed TFF-
CKF adequately estimate the torque inputs. The friction
coefficients are estimated using the proposed TFF-CKF after
the error covariance of the estimated velocity is converged
(e.g., after 3.2s), and the initial guesses of the friction
coefficients are randomly generated to have the uniform
distribution on the interval [0.85, 1.15]. The candidates of
the friction coefficient are selected from 0.1 to 1.1 with the
interval 0.05. To evaluate the friction coefficient estimation
performance of the proposed TFF-CKF, the root mean square

error (RMSE) of the estimated friction coefficient is defined
St u(v))/u( )}

as e, =100 x , where  represent
the ~-th element of p (or u) and I’ is the length of u (or
[1). The RMSE of the estimated friction coefficient using
the proposed TFF-CKF is calculated, and the mean &, and
standard deviation o, of the RMSE are 11.04% and 4.24%,
respectively. The histogram of ¢, in Fig. 6 shows that e, are
less than 15% for 82.96% of 264 simulations.

vertical screw /
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INS (or IMUs) \\ SenBoy
= wheel
motor

Fig. 7: Implemented RWD WMR with onboard sensors and tire
model measuring equipment.

B. Outdoor Experiments

The implemented RWD WMR using the traxxas Rally
1/10 RC car is shown in Fig. 7. An Advanced Navigation
Spatial INS and GNSS receiver, four RLS RMOS8 encoders,
Intel NUC onboard PC, and a Piher PT-10 potentiometer are
used for the implemented RWD WMR. The potentiometer
measures the rotated angle of a servo motor which steers the
front wheels, and the relations between the steering angle of
the front wheels and the rotated angle of the servo motor
are measured using the motion capture system OptiTrack.
Fig. 7 also shows the implemented tire model measuring
equipment. The tire model measuring equipment is designed
to measure the longitudinal and lateral tire forces of the
wheel when the slip ratio, slip angle, and vertical force are
given. By rotating a vertical screw at the top of the tire model
measuring equipment, the vertical tire force of the wheel can
be controlled. A Robotous RFT40-SAOQ1 force-torque sensor
measures the tire forces, and the tire model parameters are
estimated using the measured tire forces.

The implemented RWD WMR which is controlled by a
remote controller turns to left for seven times, and Fig. 8
shows the estimated tire forces and torque inputs using the
proposed TFF-CKF. During the left turn, the longitudinal
tire forces of the rear wheels, lateral tire forces, and vertical
tire forces of the right wheels have peaks as shown in Fig. 8.
The estimated longitudinal tire forces of the front wheels are
approximately zero, because the front wheels do not have any
actuator. The estimated friction coefficients for three different
trajectories using the proposed TFF-CKF are shown in Fig. 9.
For the three experiments (e.g., experiment 1, 2, and 3), the
implemented RWD WMR drives on the same asphalt road,
and the friction coefficients are calculated after all the wheel
velocities reach 0.05m/s. The mean and standard deviation
of the estimated friction coefficients are, respectively, i1 =
0.856 and 7, =0.1071, where the friction coefficient of the
dry asphalt is 0.8-1 [24]. The simulation time for the 76.4s
trajectory is about 26.16s using the MATLAB.

V. CONCLUSIONS

A novel real-time algorithm to estimate the full three-
dimensional tire forces and friction coefficient, which is
the proposed TFF-CKF, is proposed in this paper. The
proposed TFF-CKF estimates the tire forces and friction
coefficient of a car-like RWD four wheel WMR based on the
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onboard sensors (e.g., onboard navigation sensors and wheel
encoders) utilizing the tire model based constrained KF
(CKF). Thanks to the feedback correction loop, the proposed
TFF-CKF has advantages of accuracy and robustness. The
proposed TFF-CKF can be used for the safety controls
such as yaw stability control, traction control, and rollover
prevention control. Our future work is incorporating the
rotation dynamics to improve the accuracy of the estimated

tire
the

[1]

[2]

forces and formulating the vertical tire forces based on
dynamic equations of the WMRs.
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