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Abstract— We present a novel pose and posture estimation
framework of aerial skeleton system for outdoor flying. To
exploit redundant/independent sensing while rendering the
system “modular”, we attach an IMU (inertial measurement
unit) sensor and a GNSS (global navigation satellite system)
module on each link and perform SE(3)-motion EKF (extended
Kalman filtering). We then apply the kinematic constraints of
the aerial skeleton system to these EKF estimates of all the
links through SCKF (smoothly constrained Kalman filtering),
thereby, enforcing the kinematic coherency of the skeleton
system and, consequently, significantly enhancing the estimation
accuracy and the control performance/stability of the aerial
skeleton system. A semi-distributed version of the obtained
estimation framework is also presented to address the issue
of scalability. The theory is then verified/demonstrated with
real outdoor flying experiments and simulation studies of a
three-link aerial skeleton system.

I. INTRODUCTION

Multi-rotor UAVs (unmanned aerial vehicles) or, often
simply dubbed as drones, have received substantial interests
from research community, industry and general public alike.
Some of its representative/promising applications include
aerial photography and surveying [1], pesticide spraying [2],
entertainment [3] and aerial manipulation/operation [4]–[9].
Recently, a very unique and versatile drone-based aerial
robotic system has been emerging, namely, aerial skeleton
system, which consists of multiple articulated links, each
purely actuated by multiple asymmetrically-attached dis-
tributed rotors; or with some motors to rotate the rotors w.r.t.
the link and/or to directly produce inter-link relative motion.
The LASDRA (large-size aerial skeleton with distributed
rotor actuation) system [10], which adopts the ODAR (omni-
directional aerial rotor) [7], [11] as its constituent link fully-
actuated in SE(3) and connects them via cables with some
compliance, is included in the former class (see Fig, 1),
also containing the Hiryu-I system [12] which is constructed
with 1-DOF (degree-of-freedom) parallel links actuated by
two thrusters attached on each link. On the other hand, the
DRAGON (dual-rotor multi-link robot with ability of multi-
DOF aerial transformation) system [13] utilizes servo-motors
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Fig. 1. Aerial skeleton system: three link LASDRA system for outdoor
flying. Also shown are the inertial and body coordinate frames, {O} :=
{XO, Y O, ZO}, {Bi} := {XBi , Y Bi , ZBi}.

to generate rotor-link and link-link motions, belonging to the
latter class. These aerial skeleton systems are envisioned to
realize such new applications as mechanical operations at
high-rise building or in a narrow/long space; or articulated
flying characters in amusement parks.

In this paper, we consider the onboard pose and posture
estimation problem of this LASDRA system [10] particularly
for its outdoor flying (see Fig. 1). This problem is challeng-
ing for the following reason. First, to maximize system dex-
terity, the LASDRA system connects two links via a cable.
This then allows for full 3-DOF inter-link rotation, which
is difficult to measure by (accurate, yet, axis-demanding)
encoders, and instead, IMUs (inertial measurement units) are
more suitable (or often only viable) option for that as so
for our LASDRA system. This IMU however exhibits non-
negligible (yet, still bounded) link absolute attitude estima-
tion error, which can be accumulated to a rather very large
link position estimation error as propagated toward the end of
the aerial skeleton system. This can pose a serious problem,
since, e.g., if the skeleton is supposed to fly with a certain
posture, this desired behavior essentially needs to be decoded
into the position and attitude controls of each link, and, with
the (accumulated) link position estimation error becoming
very large (e.g., skeleton with large number of links), the
link position control can be excessively erroneous, which
may contradict/conflict with the attitude/position control of
its own or other neighboring links and possibly result in
collapsing and falling-down of the skeleton (with excessive
internal force at some joints) particularly with the typical
rotors prone to saturate. We may attach a GNSS (global
navigation satellite systems) module on each link to correct
its position estimation error, which is still not so promising
either, since the accuracy of typical GNSS is too poor (i.e.,
meter-level accuracy) to reclaim the kinematic coherency of
the aerial skeleton system as stated above.
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To overcome this challenge, in this paper, we propose
a novel pose and posture estimation framework for the
aerial skeleton system based on IMU and GNSS sensors
for its outdoor flying. More precisely, we attach an IMU
sensor and a GNSS module on each link and estimate
their state via standard SE(3)-motion EKF (extended Kalman
filtering) [14], [15]. We choose this (distributed) sensor
configuration to render the skeleton system “modular” while
also significantly enhancing position sensing accuracy with
redundant/independent GNSS sensors (via the constraints -
see Sec. V). We then apply the kinematic constraints of
the aerial skeleton system (i.e., point-constraint between
two links via the cable) to these EKF-estimates of all the
links to enforce the kinematic coherency and, consequently,
(significantly) improve the estimation accuracy. For this, we
adopt the framework of smoothly constrained Kalman fil-
tering (SCKF) [16], where nonlinear constraint is linearized
and applied repeatedly as measurement updates with some
artificial noise. We choose SCKF here is because it is known
of its superior performance of constraint error convergence
as compared to other constrained KF techniques (see [17]),
which is crucial for this paper as it can directly translate to
the performance of enforcing the kinematic coherency of the
skeleton system. We also extend the standard SCKF in this
paper to incorporate the multi-dimensional kinematic con-
straints, error-state formulation and some suitable manifold
structure common in SE(3)-motion estimation. We further
devise a scalable semi-distributed version of the estimation
algorithm, which can substantially speed up the computa-
tion speed by dividing the skeleton into several groups,
locally-performing full-SCKF for each group, and globally-
performing partial-SCKF among the groups. The presented
estimation frameworks are then verified with real outdoor
flying experiments and simulation studies of our LASDRA
system. To our knowledge, this paper presents the very first
result on the onboard estimation framework of the aerial
skeleton system and its real outdoor flying demonstration.

The rest of the paper is organized as follows. In Sec. II,
some preliminary information is explained for the description
of main results including the modeling and controller for the
system, in Sec. III-A, pose and posture estimation framework
enforcing kinematic coherency is presented, and also its
semi-distributed version is described. Simulation results to
verify the scalability issue regarding the devised algorithm
is introduced in Sec. IV, and in Sec. V, experiment result of
outdoor flight using 3 link LASDRA system is presented.

II. PRELIMINARY

A general aerial skeleton system can be modelled with
Newton-Euler dynamics as following,

mip̈i +mige3 = Riui +Rifi −Ri+1fi+1

Jiω̇i + S(ωi)Jiωi = τi + S(rci,i)fi − S(rci,i+1)Ri+1fi+1

where mi ∈ <, Ji ∈ <3×3 are the mass and inertia matrix of
i-th link, pi, ωi ∈ <3 are the position and angular velocity
vector of i-th link expressed in inertial and body frame
respectively, Ri ∈ SO(3) is the rotation matrix of i-th link,

ui, τi ∈ <3 are force and torque input applied to i-th link in
body frame, fi, fi+1 ∈ <3 are the force applied at left and
right side joint of the i-th link (here, right side means positive
x direction in link body frame), g ∈ < is the gravitational
constant with e3 := [0; 0; 1], and S(?) is the skew-symmetric
matrix mapping.

In this paper, the LASDRA system [10] is exploited as
an aerial skeleton, each link module of which is comprised
of ODAR [7], [11] system. Each link modules can generate
omni-directional force and torque with the non-aligned bi-
directional rotors, and IMU, GPS modules are attached on the
center of each link for the pose estimation of the system. The
link modules of the system are connected each other using
compliant cable, enabling to be acting as a 3DOF joint with
wide range of motion. As the system has fully-actuated link
modules, various control methods are available and one of
the possible controller would be a decentralized impedance
controller [10] as following

ui = RTi (mige3 +mip̈i,d + kdėp,i + kpep,i) (1)
τi = S(ωi)Jiωi − kReR,i − kωeω,i − kIeI,i

− Ji(S(ωi)Ri,dωi,d −Ri,dω̇i,d)

where p̈i,d, ωi,d, ω̇i,d ∈ <3 are desired acceleration, angular
velocity and angular acceleration, ep,i := pi − pi,d ∈
<3,ėp,i := ṗi − ṗi,d ∈ <3 are position and velocity
error, eR,i := (RTi,dRi − RTi Ri,d)

∨ ∈ <3, eω,i := ωi −
RTi Ri,dωi,d ∈ <3, eI,i :=

∫
eω,i + γIeR,idt ∈ <3 are

rotation, angular velocity and integral error, (?)∨ is the
mapping from skew-symmetric matrix to a vector, and
kd, kp, kR, kω, kI , γI ∈ < are control gains. Here, notice that
the position estimation is taking an important role for the
control, which also leads to the motivation of the estimation
framework in this work. Also, the controller provides an
error-tolerant property, since it is an impedance control
having some extent of compliancy.

For the LASDRA system, IMU sensors and GNSS mod-
ules are exploited for the pose estimation, and using these
sensing modules for an aerial skeleton brings us the issues
of position error accumulation propagated toward the link
modules and kinematic coherency, as mentioned in the
previous section. To deal with these issues, we come up
with a novel estimation framework that enforce the estimated
pose and posture to obey the given kinematic constraint using
the SCKF algorithm. Also, to overcome the scalability issue
when the number of links of the skeleton gets much larger,
we devise a semi-distributed version of the proposed estima-
tion framework, and all details on the proposed framework
will be delineated in the following sections.

III. POSE AND POSTURE ESTIMATION OF AN AERIAL
SKELETON SYSTEM

A. Estimation Algorithm via SCKF
In this paper, the SCKF algorithm in [16] is modified to

be suitably used for aerial skeleton systems. The original
algorithm is extended to be used for multi dimensional
constraint, and the constraint is applied using error-state
kinematics to deal with quaternion states. The developed
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pose estimation algorithm is composed of two steps, a
standard EKF and constraint application step, and both steps
are described respectively in the following paragraphs.

1) Extended Kalman Filter: In the standard EKF step, the
EKF state and covariance is updated with the measurement
which can be expressed as

x̂Ei,k, P
E
i,k ← EKF(x̂Ei,k−1, P

E
i,k−1, yi,k) (2)

where we denote that the subscript i ∈ {1, ..., n} is the link
index, k is the step number of the filter, x̂i,k ∈ <10 is the
estimate of the state defined as

xi,k := [pi,k; vi,k; qi,k] ∈ <10

where pi,k, vi,k, qi,k ∈ <3 are position, velocity and quater-
nion vector, and the superscript E means the variable re-
sulting from the EKF. Also, Pi,k ∈ <9×9 is the covariance
matrix of x̃i,k, where x̃i,k := [p̃i,k; ṽi,k; δθi,k] ∈ <9 is the
error state for the EKF [14], [18], and p̃i,k := pi,k − p̂i,k,
ṽi,k := vi,k − v̂i,k, and δθi,k ∈ <3 is the attitude error
represented with angle vector which has relation of qi,k ⊗
q̂−1
i,k ' [1; 1

2δθi,k], ⊗ is a quaternion multiplication operator,
and yi,k is the measurement (e.g., GPS and IMU). Although
there can be more state variables for the EKF state in (2)
such as sensor biases, magnetic field vector, and so on, here
we only consider position, velocity, and quaternion vectors
as those are the variables to be updated by the constraint
applying process.

2) Constraint Application: In this step, the estimate result
of EKF and the constraint information is used to obtain
the estimation result coherent with the kinematic constraint
given by the system configuration. The constraint application
process can be described with pseudo-code as following
where

Algorithm 1: Constraint application process

j ← 0, x̂Ck,j ← x̂Ek , PCk,j ← PEk
while ||ck,j(x̃Ck,j)||2 > ε do

(x̂Ck,j+1,P
C
k,j+1)← CA(x̂Ck,j ,P

C
k,j , ck,j(x̂

C
k,j))

j ← j + 1

x̂k := [x̂1,k; x̂2,k; · · · ; x̂n,k] ∈ <10n

is the stacked vector, n is the number of links of the system,
Pk ∈ <9n×9n is the stacked block diagonal matrix of
covariance matrices Pi,k, ck(x̂Ek ) ∈ <6(n−1) is the constraint
error with the state estimate x̂Ek , CA() is the abbreviation of
“Constraint Apply”, the superscript C means the state and
covariance resulting from the constraint application process,
and the subscript j is the step index that is initialized with 0
and added 1 after every loop. For the aerial skeleton system,
the constraint error ck(x̂k) is defined as

ck(x̂k) = [c1,k; c2,k; · · · ; cn−1,k] (3)

where the element ci,k is meaning the difference of position
and velocity estimate at the point of joint between i-th and

(i+ 1)-th links, and can be expressed as

ci,k(x̂i,k, x̂i+1,k) =

[
p̂i,k + R̂i,kdi

v̂i,k + R̂i,kS(ω̂i,k)di

]
−[

p̂i+1,k − R̂i+1,kdi+1

v̂i+1,k − R̂i+1,kS(ω̂i+1,k)di+1

]
where i ∈ {1, ..., n − 1}, p̂i,k, v̂i,k, ω̂i,k ∈ <3 are position,
velocity, and angular velocity estimate of i-th link at k-th
step, R̂i,k ∈ SO(3) is the rotation matrix estimate, and di ∈
<3 is the position vector from the i-th link center of mass to
the right side joint. With an assumption of the symmetry of
each link, the position vector to the left side joint can also
be denoted as −di.

For the constraint application process, we also exploit the
error state and error covariance as in usual EKF algorithms.
The main advantage of using the error state in this work
is the simple calculation of the constraint Jacobian which
is described below the (4). By subtracting ck(x̂k) to the
constraint error with nominal state ck(xk), and with the
small angle approximation of δθi,k, the constraint equation
can be expressed with the error state as following,

c̃k(x̃k) = [c̃1,k; c̃2,k; · · · ; c̃n−1,k] (4)

dimension of which is c̃k(x̃k) ∈ <6(n−1) and the each
element c̃i,k is defined as

c̃i,k(x̃i,k, x̃i+1,k) =

[
p̃i,k − S(R̂i,kdi)δθi,k

ṽi,k − S(R̂i,kS(ω̂i,k)di)δθi,k

]
−[

p̃i+1,k + S(R̂i+1,kdi+1)δθi+1,k

ṽi+1,k + S(R̂i+1,kS(ω̂i+1,k)di+1)δθi+1,k

]
where i ∈ {1, ..., n− 1}, x̃k := [x̃1,k; x̃2,k; · · · ; x̃n,k] ∈ <9n

is the stacked error state vector, and it can be expressed again
as ∂c̃k

∂x̃k
· x̃k = 0. Here, we define the constraint Jacobian

C̃k(x̂k) := ∂c̃k
∂x̃k
∈ <6(n−1)×9n which can be easily obtained

as the c̃k has a form of analytic product with the error states.
We can now describe the function “ConstraintApply()” in

the pseudo-code as following equations.

Pwk,j = αe−jC̃k,jP
E
k C̃

T
k,j

Kk,j = PCk,jC̃
T
k,j(C̃k,jP

C
k,jC̃

T
k,j + Pwk,j)

−1

x̃Ck,j+1 = −Kk,jck,j(x̂
C
k,j)

PCk,j+1 = (I−Kk,jC̃k,j)P
C
k,j(I−Kk,jC̃k,j)

T

+ Kk,jP
w
k,jK

T
k,j

where Pwk,j ∈ <6(n−1)×6(n−1) is the weakening covariance,
an artificial noise for the constraint application that designed
to decrease exponentially as the loop goes on, Kk,j ∈
<9n×6(n−1) is the kalman gain, C̃k,j := C̃k(x̂k,j), α is a
constant parameter which is set to be 0.01 as in [16]. Then
the error state is update by the product of kalman gain and
the constraint error, and the covariance matrix is also updated
to be used for the next loop. Then, the state x̂k,j is updated
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Fig. 2. Illustrative figure of the notations for the semi-distributed version
algorithm.

with the error state as

p̂Ci,k,j+1 = p̂Ci,k,j + p̃Ci,k,j+1

v̂Ci,k,j+1 = v̂Ci,k,j + ṽCi,k,j+1

q̂Ci,k,j+1 = q̂Ci,k,j ⊗ δqi,k,j+1

where δqi,k,j+1 ' [1; 1
2δθi,k,j+1] is a quaternion error vector

and normalized before the multiplication. The loop is con-
tinued while the constraint error satisfies ||ck,j(x̃Ck,j)||2 < ε
where ε is a small enough number. After the termination
of the constraint application loop (suppose that j = t), the
resultant state estimate x̂Ck,t can be exploited as the final pose
estimation x̂k used for the control.

In this work, the result of constraint application is not
fed back to the next step EKF state again, since with the
original algorithm: 1) when the measurement data has large
deviation from the constraint, measurement update and the
constraint application process can conflict each other causing
state updates with large magnitude and also can harm the
stability of the estimation; 2) there exists an implementation
issue that the EKF and constraint application for multiple
links need to be synchronized at every time step, and it is not
simply applicable for the system with distributed computing
modules as the case of our system.

B. Semi-Distributed Version of Algorithm

In this work, a semi-distributed version of the algorithm
in Sec. III-A is also presented to deal with the scalability
issue when the number links is extremely large. In the
semi-distributed algorithm, the entire links of the system are
divided into several groups which contains some number of
links where the number depends on the computing perfor-
mance of the on-board PC used for the system. Then, the
constraint application process is performed for each group
of links and the kinematic constraint can be obeyed at least
among the links in a same group. To describe the proposed
estimation scheme, let us define some notations (also refer
to Fig. 2). First of all, each group of links are defined as
a set and the γ-th group can be written as Gγ = GΓ(i) =
{lΓ(i), · · · , i, i + 1, · · · , rΓ(i)} where γ is the index of the
group increasing through the positive x direction in body
frame of each link, Γ(i) is the index of the group that
contains the i-th link, lΓ(i), rΓ(i) are the indices of the most
left and the most right link of the γ-th group which contains
i-th link, the number of elements in the set Gγ is denoted
as |Gγ | := nγ , and the number of the groups in the entire
system is denoted as s.

Then, the semi-distributed pose estimation algorithm, as a
substitute for the constraint application process in Sec. III-A,

can be divided into local and global estimation steps, each
will be explained in the paragraphs below.

1) Local Constraint Application: The local constraint
application step shares the same function “CA()” in Algo-
rithm 1, whereas the input for the function is changed as
in Algorithm 2, where γ = Γ(i) ∈ {1, ..., s}, x̂EGγ ,k

:=

Algorithm 2: Local constraint application process

foreach γ ∈ {1, · · · , s} do
j ← 0, x̂CGγ ,k,j

← x̂EGγ ,k
, PCGγ ,k,j

← PEGγ ,k

while ||cGγ ,k,j(x̃
C
Gγ ,k,j

)||2 > ε do
(x̂CGγ ,k,j+1,P

C
Gγ ,k,j+1)←

CA(x̂CGγ ,k,j
,PCGγ ,k,j

, cGγ ,k,j(x̂
C
Gγ ,k,j

))
j ← j + 1

[x̂Elγ ,k; · · · ; x̂Erγ ,k] ∈ <10nγ is the stacked vector of EKF
pose estimates of links in γ-th group, PEGγ ,k

∈ <9nγ×9nγ

is the covariance matrix of the error state x̃EGγ ,k
:=

[x̃Elγ ,k; · · · ; x̃Erγ ,k], similarly x̂CGγ ,k
∈ <10nγ and PCGγ ,k

∈
<9nγ×9nγ are the stacked state and covariance of pose esti-
mates after constraint application, cGγ ,k(x̂EGγ ,k

) ∈ <6(nγ−1)

is the kinematic constraint error among the links in γ-th
group, cGk (x̂Ck ) ∈ <6(s−1) is the constraint error vector
defined as

cGk (x̂Ck ) := [cG1,k(x̂r1,k, x̂l2,k); · · · ; cGs−1,k(x̂rs−1,k, x̂ls,k)]

which is required to be zero, and cGγ,k(x̂rγ ,k, x̂lγ+1,k) is the
position and velocity difference between the right side tip of
the most right link in the γ-th group and left side tip of the
most left link in the (γ + 1)-th group, similarly defined as
ci,k(x̂i,k, x̂i+1,k) in (3).

2) Global Constraint Application: After the local con-
straint application process in Algorithm 2, the kinematic
constraint is satisfied within a group, but there still exist
inconsistencies between the tips of the neighbouring group
of links. To resolve these inconsistencies, the global con-
straint application process is executed which is expressed as
following

x̂k ← GCA(x̂Ck ,P
C
k , c

G
k (x̂Ck )) (5)

where GCA() is the abbreviation of the “Global Constraint
Application”.

Since the computation amount of the global constraint
application process is directly related with the number of link
of the system, the highest priority of this process would be
reducing the computation to achieve the system scalability.
As the main cause of computation load in the constraint
application process is the nonlinear kinematic constraint
coming from the attitude vectors, in this process, we consider
the attitude estimates q̂Ci,k as given values and only update
the position and velocity estimate. Then, the global constraint
application process can be thought of as shifting the position
and velocity vectors of each group to match the given
kinematic constraint, that is, cGk (x̂Ck ) = 0. Let us define
the shifting vector ∆xGΓ(i)

:= [∆pGΓ(i)
; ∆vGΓ(i)

] ∈ <6 for
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TABLE I
PARAMETERS USED FOR THE SIMULATION

Descriptions Values
Link length 1 [m]

Process noise ∼ N (0, diag[0.1I3, 0.1I3, 0.01I3])
Measurement noise ∼ N (0, diag[0.1I3, 0.1I3, 0.01I4])

Constraint apply stop condition ||ck,j(x̃Ck,j)||2 < 0.01 [m]

each link, and the vector share same values if the links are
in the same group. To decide these shifting vectors, we solve
for following constrained optimization

min
∆xGΓ(i),k

n∑
i=1

(∆xGΓ(i),k)T P̄−1
i,k (∆xGΓ(i),k) (6)

s.t. cGk (x̂k) = 0

where P̄i,k ∈ <6×6 is the covariance of [pCi,k; vCi,k] which
discarded quaternion vector from xCi,k, x̂k is the stacked
vector of the final estimate element of which is calculated
as x̂i,k = x̂Ci,k + [∆xGΓ(i)

; 0] ∈ <10. The objective function
means minimizing the Mahalanobis distance from the esti-
mation x̂Ck to the x̂k. Since (6) is the quadratic program with
linear constraint, closed form solution can be easily obtained.
Although this scheme is less optimal than the process in Sec.
III-A as the attitude is not updated with the constraint apply,
it does not need multiple loops of constraint application and
can obtain updated estimate with a closed form solution.

IV. SIMULATION

In this paper, we perform simulation to verify the scalabil-
ity issue of the devised estimation framework. In the simula-
tion, 12 link aerial skeleton system is simulated with artificial
measurements of IMU and GNSS. The parameters used for
the artificial measurements, EKF, and SCKF are summarized
in Table I. In addition to a white Gaussian measurement
noise, we also applied bias with low frequency oscillation
(< 0.1Hz) for position and quaternion measurement with
amplitude of 0.5m and 5◦ in axis angle, respectively, to
emulate the GNSS drift, biases of IMU.

Then, first of all, computing time increase with respect to
the link number increase is checked with simulation, while
comparing the semi-distributed version of the algorithm
with non-applied algorithm. For both cases, simulation is
conducted for 20 seconds, size of the group nγ is set to be 2
for the semi-distributed algorithm, and the information of the
whole links are insulted to the “CA()” function in Algorithm
1. The result is depicted in Fig. 3 and we can clearly see that
the computation time of the semi-distributed algorithm grows
much slower than the other, implying that the advantage of
the algorithm further increases for the aerial skeleton with
very large number of links.

For the second simulation, computation time and the
accuracy of the estimation result are compared together,
for the semi-distributed algorithm with different group sizes
nγ ∈ {2, 3, 4, 6, 12}. An illustrative figure of 12 link aerial
skeleton during the algorithm is shown in Fig. 4 at simulation

Fig. 3. Comparison of computing time according to the link number
increase and the usage of semi-distributed algorithm

Fig. 4. Illustrative figure of the process of the semi-distributed version of
the constraint application algorithm.

time 5, 10, 15s, where each link module is drawn with a line
segment. The figure shows the entire process of the proposed
estimation framework from EKF to the final estimate after
the global estimation process, and each case of nγ = 2, 12
shows distinguishable difference of local estimation result
(blue narrow dotted line), where two combined links are
shown in the left column of figures. Then, the results
of computation time and the accuracy of estimation are
presented in Table II. Position and quaternion error in the
table are meaning the two norm of the error (from the true
value) average throughout the all links and all time steps in
the simulation. The result shows that a slight increase of the
estimation accuracy (about 15% and 12% for position and
quaternion error respectively, from nγ = 2 to nγ = 12) is
obtained with the increase of the group size, while sacrificing
the computation time (more than twice from nγ = 2 to
nγ = 12). This trade-off relation can be a reference for se-
lecting the group size nγ for the semi-distributed algorithm,
considering the computing performance of the system and
the desired extent of estimation accuracy.

V. EXPERIMENT

To verify the proposed estimation framework, we imple-
ment the outdoor flight using the LASDRA system [10]
containing three ODAR [7] system (1m length, 1.8kg weight
for each) as link modules. The link modules are connected
each other using a compliant PVC (polyvinyl chloride) cable
which can provide high operation range. For the actuation of

TABLE II
COMPUTATION TIME & ESTIMATION ACCURACY ACCORDING TO THE

GROUP SIZE INCREASE

Group Size (nγ ) Computing time [s] Pos. error [m] Quat. error
2 13.753 0.0377 0.0026
3 15.496 0.0370 0.0025
4 16.356 0.0369 0.0025
6 20.900 0.0360 0.0023
12 29.041 0.0322 0.0023
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Fig. 5. Snapshots and position tracking result of 3 link LASDRA outdoor
flying experiment. Solid line: estimated position, dashed line: desired
position.

the system, DJI snail propulsion system is exploited with
6048-3D propeller that can generate bi-directional thrust
upto about 8N. In the LASDRA system, both Raspberry
Pi 3 and Pixhawk 2.4.8 are used as computing modules,
one Raspberry Pi mounted on the middle link and three
Pixhawks are attached on the center of every link modules.
The Raspberry Pi takes a role of the main PC of the system,
sending desired pose command, and collecting all the state
and covariance information from the EKF running on each
Pixhawks for the computation of SCKF algorithm. Due to the
limited computing power of the onboard PC, the update rate
is set to be 20Hz, yet, for the result of SCKF algorithm, only
a difference from the EKF result is transferred to the Pixhawk
so that the fast update rate of the EKF is not harmed while
relatively slowly applying the constraint information. Then,
on each Pixhawk, desired pose command and the updated
state estimate with constraint application are received, EKF
and controller are calculated with 500Hz and finally PWM
signal is generated to run the rotors. For the power supply of
motors, 4S LiPo battery attached on each link is exploited
and the battery is also used to supply power for all the com-
puting modules after stepdowning the voltage to 5V using
the battery eliminator circuit (BEC). For the sensing modules
of the system, IMU’s inside the Pixhawk and GPS modules
(U-blox NEO-M8) are used and those are mounted on every
links of the system. Here, RTK (real-time kinematic) GPS
can be another option for a sensing module which provides
much more accurate position measurement than a general
GNSS, yet, as the main purpose of the system prototype
is verifying the performance of the proposed estimator, not
achieving the best flight performance, we do not consider
using of it. Exploiting the RTK-GPS and implementing the
aerial skeleton with further accurate and agile motion would
be one of our future work.

Then, with the constructed system above, outdoor flight
experiment is performed as depicted in Fig. 5. After hovering

Fig. 6. Constraint error before the constraint application process.

Fig. 7. Constraint error after the constraint application process, and the
number of the constraint application loop run.

for a few seconds, a pose trajectory is given to the system
so that the system behaves like bending its configuration in
forward and backward direction. The result of the flight is
shown in the bottom of the Fig. 5. The RMS error between
the desired and estimated position of each link is 11.61cm,
13.40cm, 12.57cm respectively. Although the position track-
ing error is not small, there was no issue at generating desired
pose and posture, due to the error-tolerant property of the
impedance control. Also in Fig. 6 and 7, the constraint errors
before and after the SCKF algorithm are described, and these
show that the constraint error is well regulated under 5cm
and 2cm/s while there exist large constraint errors before the
algorithm due to the inaccuracy of the GNSS, and gyro noise.
There are small jump and peak in the position constraint
error near 42, 50s and this happened due to the change of
the loop number of constraint application process as shown
in the bottom plot in Fig. 7. This can be alleviated if the
loop stop condition ||ck,j(x̃Ck,j)||2 < ε is set much tightly,
where the ε in the experiment is set to be 0.05 to avoid an
excessive computation.

VI. CONCLUSION

In this paper, we present a novel pose and posture es-
timation framework of aerial skeleton system for outdoor
flying. To enforce the kinematic coherency of the individual
EKF estimates, we apply the kinematic constraints of the
aerial skeleton system to the EKF estimates of all the links
through SCKF, thereby, enforcing the kinematic coherency
of the skeleton system and, a semi-distributed version of the
obtained estimation framework is also presented to address
the issue of scalability. The proposed estimation framework
is then verified with real outdoor flying experiments and sim-
ulation studies. Some possible future works are as follows:
motion generation for the system endowed with naturalness;
teleoperation of the system; experiment verification of the
semi-distributed version of the algorithm.
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