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Abstract— Ultra-wideband (UWB) communication technol-
ogy has gained attention in robotics due to its ability to
provide range measurements possibly with centimeter-level
accuracy. Nevertheless, practical UWB range measurements are
susceptible to disturbances from multiple sources, including
the anisotropic characteristics of antennas, non-line-of-sight
(NLOS) conditions, and multipath propagation. In this paper,
we introduce a UWB range measurement model that addresses
these sources of error. To accommodate the effects of antenna
anisotropy, we adopt real spherical harmonics to represent
directional bias in the UWB range measurement model. To
handle delayed measurements induced by NLOS conditions and
multipath propagation, an asymmetric heavy-tailed distribution
is utilized to model the measurement noise. We calibrate this
measurement model based on the maximum likelihood esti-
mation method and propose a UWB-based localization system
based on that. Our localization system provides: 1) anchor
self-calibration, which identifies anchor placement by fusing
visual-inertial-ranging measurements based on continuous-time
state representation; and 2) filtering-based state estimation,
which applies our measurement model into Kalman filtering
framework via an iterative update algorithm. Experimental
validation is conducted to demonstrate the effectiveness of
the measurement model for our localization system. We open
source our implementation of the proposed UWB-based lo-
calization system at https://github.com/INRoL/inrol_
uwb_localization.

I. INTRODUCTION

In indoor environments where global navigation satellite
systems (GNSS) are inaccessible to mobile robots, ultra-
wideband (UWB) localization systems offer a suitable alter-
native [1]. These systems can achieve localization accuracy
down to decimeter level. Their appeal lies in their cost-
effectiveness, low power consumption, and ease of setup
for lightweight systems, without the need for heavy com-
putational resources. These advantages are particularly well-
suited for mobile robots with limited resources and pay-
load capacity. Furthermore, as they can provide information
associated with globally fixed landmarks, the UWB range
measurements have been applied to resolve a challenge of
drift accumulated in long-horizon state estimation methods
using exteroceptive sensors (e.g. camera [2, 3], LiDAR [4]).
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Fig. 1. The experiment setup for the UWB-based localization system.

UWB transceivers in localization systems are typically
classified into two types: 1) the tag which is a UWB module
attached to mobile platforms; and 2) the anchors which are
multiple UWB modules deployed in the environment, as
shown in Fig. 1. In the two-way ranging (TWR) technique,
the tag measures the time-of-flight of the signal to an anchor
by sending and receiving signals, then calculates the distance
by multiplying the time interval with the speed of light.

To ensure the accuracy of the ranging technique, accurate
timing measurements of signal transmission and reception
are crucial. Even a timing error as small as one nanosecond
can result in a ranging error of almost 30 centimeters. In this
paper, we address the following sources of timing errors:

1) Anisotropic characteristics of antennas: Due to the
anisotropic characteristics of UWB antennas, signal wave-
form distortion may occur depending on the angle of the line-
of-sight [5]. The timing error resulting from these distortions
manifest as an error pattern in range measurements [6], [7],
which we refer to as directional bias in this paper.

2) Non-line-of-sight conditions and multipath propaga-
tion: Non-line-of-sight (NLOS) refers to situations where
obstacles obstruct the direct line of sight between the UWB
transmitter and receiver, resulting in waveform distortions in
the UWB signal. Multipath propagation occurs when UWB
signals reach the receiver through various routes, resulting
in transmission delays and waveform distortion.

Recent studies have introduced new UWB range measure-
ment models to mitigate these error sources. For instance,
in [8] and [9], the directional bias is represented using a
sparse Gaussian process. However, this model may not be
practical for real-time systems with limited computational
resource due to its time complexity. To address this chal-
lenge, the authors of [10] and [11] employ a computationally
efficient neural network to model the bias. Nevertheless,
this model, while more efficient, requires quite a substantial
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number of parameters to capture the bias. Furthermore, due
to the complexity of calculating the gradient of these models,
it becomes challenging to utilize them in optimization-based
estimation methods, which are widely employed for sensor
fusion. For NLOS conditions and multipath propagation, a
robust kernel is employed in [11] to alleviate the effect
of outliers in UWB measurements. Additionally, alternative
approaches surveyed in [12] identify these conditions based
on range estimates or channel statistics.

In this paper, we utilize a directional bias model based
on real spherical harmonics, which naturally represents a
function defined on a spherical surface. In [13], a bias
model utilizing real spherical harmonics is applied in a
micro aerial vehicle localization system, yet it neglects
the effect of anchor antenna. In contrast, we consider the
effect of anchor antenna in this paper by introducing an
additional bias function dependent on the line-of-sight angle
in the anchor’s frame. Additionally, to capture the influence
of NLOS and multipath, we adopt an asymmetric heavy-
tailed distribution [14] for the uncertainty model under the
assumption that NLOS and multipath conditions result in
positive errors in time-of-flight measurements.

We calibrate the proposed measurement model, including
the directional bias functions and the noise model, based
on the maximum likelihood estimation method. Based on
our measurement model, we also propose an open-sourced
UWB-based localization system with the following practi-
cally useful capabilities:

1) Anchor self-calibration: Once anchors are installed in
the environment, their precise placement is essential for
UWB-based localization. Manual calibration can be time-
consuming and error-prone, necessitating automatic identi-
fication methods for anchor placement, often referred to as
anchor self-calibration [15]. Recent researches have explored
methods that concurrently estimate anchor placement and
mobile robot state by using visual-inertial data (e.g. [3], [16],
[17]). While these methods typically approach the SLAM
problem in discrete-time, our contribution lies in developing
a framework for anchor self-calibration based on continuous-
time state representation which can effectively handle high-
rate and asynchronous sensor data.

2) Filtering-based state estimation: Kalman filter is widely
employed for real-time state estimation of mobile robots,
operating under the assumption of Gaussian distribution
for measurement noise. To accommodate our measurement
model, which involves non-Gaussian noise, we introduce an
iterative algorithm for the update step of the Kalman filter.
This algorithm allows for the integration of our measurement
model into Kalman filtering framework.

To our best knowledge, this is the only publically-available
UWB-based localization system which provides measure-
ment model calibration, anchor self-calibration, and filtering-
based state estimation, considering anisotropy of antennas
and NLOS/multipath conditions. Through our extensive ex-
perimental validation, we demonstrate the effectiveness of
our model in 1) accurately capturing the UWB measurement
bias and uncertainty; and 2) improving the accuracy of both
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Fig. 2. The coordinate systems of the tag, the anchor, and the reference
frame. The line-of-sight angles in the tag and the anchor coordinate are
respectively expressed by (φt, θt) and (φa, θa)

anchor self-calibration and filtering-based state estimation
results.

The rest of this paper is organized as follows. Section II
will describe the proposed UWB range measurement model
and its calibration technique. Then, in Section III and Sec-
tion IV, we will provide an anchor self-calibration method
and filtering-based state estimation method based on our
measurement model. Experimental results are presented in
Section V, followed by some concluding remarks in Sec-
tion VI.

II. MEASUREMENT MODEL

This section introduces a novel UWB range measurement
model aimed at enhancing the estimation performance, along
with its calibration method. In the TWR technique, UWB
range measurements are typically represented by the true
distance between UWB modules with an additive zero-mean
Gaussian noise nUWB ∼ N (0, σ2), expressed as follows:

y = ∥pt − pa∥+ nUWB, (1)

where y ≥ 0 is the value of the measured range, and pt,
pa ∈ R3 denote the positions of the tag and the anchor,
respectively, as illustrated in Fig. 2. In contrast to this
standard model, our range measurement model considers
several characteristics of UWB range measurements by inte-
grating the following terms: 1) two directional bias functions
capturing the anisotropic characteristics of both the tag and
anchor antennas; and 2) a noise term reflecting the effect of
the NLOS condition and multipath propagation.

A. Directional Bias Function

Waveform distortion, dependent on line-of-sight angles in
UWB communications, results in directional bias in UWB
range measurements [6], [7]. As shown in Fig. 2, the line-
of-sight angles in the tag and the anchor coordinates can
be expressed as two pairs of azimuth and elevation angles:
(φt, θt), (φa, θa). Under the assumption that the tag and the
anchor antennas affect range measurements independently,
we represent the directional bias in UWB measurements as
two scalar functions, bt(φt, θt) and ba(φa, θa), defined on a
unit sphere S2. In this work, we assume that anchors with
the same type of antenna exhibit the same bias pattern, and
therefore have identical bias functions.

To represent these directional bias functions, we adopt
spherical polynomials based on the real spherical harmonic
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function Yk,m(φ, θ), which can approximate a continuous
scalar function on the unit sphere [18]:

bt(φ, θ) =

K∑
k=0

k∑
m=−k

ctk,mYk,m(φ, θ), (2)

ba(φ, θ) =

K∑
k=1

k∑
m=−k

cak,mYk,m(φ, θ), (3)

where K denotes the degree of polynomials and c∗k,m repre-
sent the coefficients of each polynomial. The real spherical
harmonic function Yk,m : S2 → R has an explicit form of

Yk,m =


(−1)m

√
2Nm

k cos(mφ)Pm
k (cos θ) m > 0

(−1)m
√
2Nm

k sin(−mφ)P−m
k (cos θ) m < 0

N0
kP

0
k (cos θ) m = 0

,

where k is the degree, m is the order of harmonic function,
Pm
k are the associated Legendre polynomials and Nm

k =√
2k+1
4π

(k−|m|)!
(k+|m|)! is a normalization term. Because Y0,0(φ, θ)

is a constant function, the anchor bias function (3) excludes
Y0,0(φ, θ) to prevent duplication of the constant term present
in the tag bias function (2). The bias functions in (2) and (3)
are determined by a total of 2K2 + 4K + 1 coefficients,
including ctk,m and cak,m. A parameter set Θc, containing
the coefficients of the bias functions, is defined as follows:

Θc := {ct0,0, ct1,−1, · · · , ctK,K , c
a
1,−1, · · · , caK,K}. (4)

Using bt(φ, θ) in (2) and ba(φ, θ) in (3), we improve the
standard UWB range measurement model in (1) as:

y = ∥pt − pa∥+ bt(φt, θt) + ba(φa, θa) + nUWB, (5)

where the noise term, nuwb, represents the measurement
uncertainty, which will be further discussed in Section II-B.
Using the parameters Θc, we define a measurement function
for the deterministic term of the model as follows:

hUWB(T
t
a;Θc) := ∥pt − pa∥+ bt(φt, θt) + ba(φa, θa),

(6)

where Tt
a ∈ SE(3) represents the pose of the anchor in

the tag coordinate system. From the relative pose Tt
a, we

can calculate the distance (∥pt − pa∥) and the line-of-sight
angles (φt, θt, φa, θa).

B. Noise Model

NLOS conditions and multipath propagation can cause
delays in UWB signals, leading to positive errors in range
measurements. To accommodate their delaying effect on
measurements, we utilize an asymmetric heavy-tailed noise
distribution, which is applied to model outliers in UWB
measurements [14]:

nUWB ∼

{
(2− α)N (0, σ2), for nUWB < 0

αCauchy(0, γ), for nUWB ≥ 0
, (7)

where σ is the standard deviation of the Gaussian distribution
for negative values, γ is the scale parameter of the Cauchy
distribution for positive values, and the constants α and

2 − α are introduced to ensure the integral of a probability
density function equals one. From the continuity condition
at nUWB = 0, the parameter α is determined by σ and
γ [14]. Thus, we denote the parameters representing the
asymmetric noise distribution as Θn := {σ, γ}. The negative
log likelihood function for the asymmetric noise distribution
(7) is derived as follows:

ρ(nUWB;Θn) :=

{
LG, for nUWB < 0,

LC , for nUWB ≥ 0,
(8)

LG := − log(2− α) +
1

2
log 2π + log σ +

n2UWB

2σ2
, (9)

LC := − logα+ log π + log γ + log(1 +
n2UWB

γ2
). (10)

C. Measurement Model Calibration

This subsection presents a calibration method for the
model parameters Θc and Θn. We collect the calibration
dataset by measuring range while recording the relative pose
between a moving tag and fixed anchors. The dataset is
denoted as {(y1,Tt

a,1), · · · , (yN ,Tt
a,N )}, where Tt

a,i repre-
sents the relative pose of the tag and the anchor for the i-th
measurement. Using the UWB range measurement model in
(5), we formulate an optimization problem for calibrating
the model parameters based on the maximum likelihood
estimation as follows:

min
Θc,Θn

N∑
i=1

ρ(ei;Θn), (11)

ei := yi − hUWB(T
t
a,i;Θc), (12)

where ei denote the measurement errors determined by the
parameter Θc.

III. ANCHOR SELF-CALIBRATION

In this section, we introduce an anchor self-calibration
method utilizing the measurement model outlined in (5).
Our method leverages the tightly coupled fusion of visual,
inertial and UWB measurements within a mobile platform.
To effectively handle the high-rate and asynchronous sensor
data, we employ a continuous-time state representation.
Inspired by the continuous-time vision-based SLAM method
in [19], we propose a framework to solve the estimation
problem, comprising a multi-step initialization process and
a full-batch optimization.

The proposed anchor self-calibration method simultane-
ously estimates a continuous-time state variable x(t) and
landmark variables consisting of Nf positions of image fea-
ture points Pf = {pf1 , · · · ,pfNf

} and Na poses of installed
anchors Ta = {Ta1

, · · · ,TaNa
}, where pfi ∈ R3 and Tai

∈
SE(3). The state x(t) contains the position p(t) ∈ R3 and
orientation R(t) ∈ SO(3) of the trajectory under estimation,
along with the time-varying accelerometer/gyroscope biases
bα(t),bω(t) ∈ R3.

We parameterize the continuous-time state by cumulative
B-splines [20], which includes three-dimensional vector ele-
ments (p(t),bα(t),bω(t)) and a Lie group element (R(t)).
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In the B-spline representation, these elements are represented
by control nodes distributed uniformly over a time interval.

A. Initialization

We first obtain scaleless camera poses {pcj ,Rcj} with
j ∈ {1, 2, · · · , Nc} and 3D feature point positions by using
monocular structure-from-motion (SfM) software such as
COLMAP [21]. Next, we fit B-splines of position and ori-
entation to the Nc camera poses by minimizing the position
and orientation error as follows:

min
pc(t),Rc(t)

Nc∑
j=0

∥pc(tj)− pcj∥2 + ∥Log(Rc(tj)
TRcj )∥2,

(13)

where Log(·) is the logarithm map of SO(3), and
(pc(tj),Rc(tj)) are the samples of the B-splines at the
timestamp of the j-th camera pose. The initial values of the
control nodes at times ti = t0 + i∆t for the B-splines are
obtained by linear interpolation of the camera poses, where
t0 is the time of the first camera pose and ∆t is the uniform
time interval between the adjacent control nodes.

The subsequent phase of our framework involves finding
the scale s of the B-splines and an initial estimate of anchor
positions Pa = {pa1

, · · · ,paNa
} utilizing UWB measure-

ments {y1, · · · , yNu
}. We accomplish this by minimizing the

residuals of UWB measurements, formulated as follows:

min
s,Pa

Nu∑
i=1

∥yi − di∥2, (14)

di := ∥paκi
− pt(ti)∥, (15)

where κi ∈ {1, · · · , Na} is the anchor index associated
with a measurement yi and the sampled tag positions are
defined as pt(ti) = spc(ti)+Rc(ti)p

c
t , where pc

t is the tag
position in the camera coordinate system. From the estimated
scale s, we can derive an initial estimate of the scaled B-
spline trajectory (pc(t),Rc(t)) and the scaled position of
feature points Pf . These estimation results are refined in the
subsequent full-batch optimization process.

B. Full-batch Optimization

In the full-batch optimization, we estimate a state vector
X defined by X := {x(t),Pf , Ta,g}, where g denotes the
gravity vector with a magnitude of 9.81m/s2. In this paper,
accelerometer and gyroscope measurements are represented
as αk and ϖk, respectively, which are obtained at times
tk ∈ {t1, · · · , tNk

}. The image feature measurement zjm
refers to the pixel location of the feature point pfm observed
in the j-th image. For visual and inertial measurements, we
use the standard IMU and camera model outlined below:

zjm := π
(
Rc(tm)T (pfm − pc(tj))

)
+ nz, (16)

αk := Rb(tk)
T (p̈b(tk)− g) + bα(tk) + nα, (17)

ϖk := Rb(tk)
Tωb(tk) + bω(tk) + nω, (18)

where each noise term n∗ follows a Gaussian distribution of
N (0,Σ∗), and π(·) denotes any nonlinear camera projection

function mapping a 3D point to the pixel location. We
represent the accelerometer and gyroscope biases as zero-
mean white Gaussian processes described by:

ḃα(t) = wα(t) wα(t) ∼ GP(0,Qαδ(t− t′)), (19)

ḃω(t) = wω(t) wω(t) ∼ GP(0,Qωδ(t− t′)), (20)

under the assumption that these processes are statistically
independent. From the measurement models, we define each
measurement residual as follows:

eyi
:= yi − hUWB(Tt

−1Taκi
;Θc), (21)

ezjm := zjm − π
(
Rc(tj)

T (pfm − pc(tj))
)
, (22)

eαk
:= αk −Rb(tk)

T (p̈b(tk)− g)− bα(tk), (23)

eωk
:= ϖk −Rb(tk)

Tωb(tk)− bω(tk). (24)

Since the effect of the anchor orientation on the range
measurement model is much smaller than the distance term,
the available information for estimating them is relatively
limited. Fortunately, obtaining prior information on the ori-
entation of anchors is typically straightforward. Therefore,
we can incorporate this prior information by modeling it as

Rj = Rj,pExp(np), np ∼ N (0,Σp), (25)

where Rj ,Rj,p denote respectively the estimated orientation
and the prior orientation of the j-th anchor, respectively.
Here, np ∈ R3 is a Gaussian noise vector, and Exp(·) denotes
the exponential map of SO(3).

From the measurement models and the prior information,
we can derive an optimization cost to estimate the state
vector X as follows:

min
X

Nu∑
i=1

ρ(eyi
;Θn) +

1

2

Nc∑
j=1

∑
m∈Ij

∥ezjm∥2
Σ−1

z

+
1

2

Nk∑
k=1

(
∥eαk

∥2
Σ−1

α
+ ∥eωk

∥2
Σ−1

ω

)
+

1

2

∫ tNk

t0

(
∥ḃα(τ)∥2Q−1

α
+ ∥ḃω(τ)∥2Q−1

ω

)
dτ

+
1

2

Na∑
j=1

∥Log(RT
j,pRj)∥2Σ−1

p
,

(26)

where Ij ⊂ {1, · · · , Nf} denotes the subset of feature point
indices observed in the j-th image.

Note that the estimated results are expressed in the coordi-
nate system defined by the SfM software. Therefore, to use
the anchor placement in real-time state estimation, it may be
necessary to align them with a desired reference coordinate
system.

IV. FILTERING-BASED STATE ESTIMATION

While state estimation methods based on the extended
Kalman filter are commonly used for mobile robots, our
measurement model cannot be directly applied to them due
to its non-Gaussian noise model. In this section, we present a
method of integrating our measurement model into Kalman
filtering framework.
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Consider a discrete system using the output variable yk
modeled by our UWB measurement model (5), which can
be expressed by

yk = h(xk) + nUWB, (27)

where xk ∈ Rn is the state vector of the system and h(·)
is the rewritten measurement function in (6) for brevity. The
update step of M-estimation based Kalman filter [22] for our
system can be formulated as:

x̂+
k = argmin

xk

1

2
∥xk − x̂k∥2P−1

k

+ ρ (eyk
(xk);Θn) , (28)

with a prior information xk ∼ N (x̂k,Pk) and eyk
(xk) :=

yk − h(xk). For brevity, we will omit the noise parameter
Θn, i.e., ρ(e) = ρ(e;Θn).

By differentiating the cost function of (28), we can find a
necessary condition of the solution, expressed as

P−1
k (xk − x̂k)− (

∂h(xk)

∂xk
)Tψ(eyk

(xk))eyk
(xk) = 0 (29)

with

ψ(e) :=
1

e

∂ρ(e)

∂e
=

{
1
σ2 , for e < 0,

2
γ2+e2 , for e ≥ 0.

(30)

To find a solution of the equation (29), we propose an
iterative algorithm. First, we set x̂k,1 = x̂k to initialize
the algorithm. For brevity, we drop the timestep subscript
k in the subsequent equations. In the l-th iteration, we
approximate the equation (29) using a Taylor expansion
around the current solution x̂l as

P−1(x− x̂)−HT
l ψ(ey(x))(y − h(x̂l)−Hl(x− x̂l)) = 0,

(31)

Hl :=
∂h(x)

∂x

∣∣∣∣
x̂l

∈ R1×n. (32)

Then, we substitute the current solution x̂l into ψ(ey(x)) to
obtain a new solution x̂l+1 as follows:

x̂l+1 = x̂+Kl(y − h(x̂l)−Hl(x̂− x̂l)), (33)

Kl := PHT
l (ψ

−1
l +HlPHT

l )
−1, (34)

with ψl := ψ(ey(x̂l)). After the convergence with L itera-
tions, we can get a posterior state estimate as x̂+ = x̂L+1.

Although the posterior probability distribution is non-
Gaussian due to the nonlinear measurement function and
non-Gaussian noise model, we approximate it as a Gaussian
distribution by using the Laplace approximation [23]. This
involves computing the Hessian matrix of the cost function
in (28).

First, the approximation of the second-order deriva-
tive of ρ(ey(x)) at the solution x̂+ can be derived as
HT

L+1ψL+1HL+1. Then, the posterior covariance matrix of
the approximated Gaussian distribution can be obtained as

P+ = (P−1 +HT
L+1ψL+1HL+1)

−1. (35)

Using the matrix inversion lemma, this can be written as

P+ = P−PHT
L+1(ψ

−1
L +HL+1PHT

L+1)
−1HL+1P

= (I−KL+1HL+1)P. (36)

Model Calibration Env. Env. #1 Env. #2

Fig. 3. The anchor setups in the experiments (left) for the measurement
model calibration (Section. V-A); (middle) Env. #1; and (right) Env. #2
in the experiments of Section. V-B and Section. V-C. The larger frames
indicate the ground truth pose of the anchors and the smaller ones indicate
the anchor placement estimated by the proposed model.

TABLE I
CALIBRATED NOISE PARAMETERS AND RMSE OF THREE

MEASUREMENT MODELS

Model Calibrated noise parameters RMSE
A σ = 0.153 15.5cm
B σ = 0.127 13.3cm
C σ = 0.090, γ = 0.048 13.3cm

V. EXPERIMENTS

In this section, we validate the proposed UWB range
measurement model experimentally and demonstrate its ef-
fectiveness within the UWB-based localization system. All
sensor data were collected using a sensor suite, illustrated
in Fig. 1. The suite comprises a monocular global shutter
camera and a Crazyflie 2.1 nano-quadcopter capable of
providing UWB range and IMU measurements at a rate
of 100 Hz. For the UWB anchors in the environments,
we employed eight Qorvo’s DWM1001-DEV boards. The
ground truth poses of both the sensor suite and the anchors
were tracked by the OptiTrack MOCAP (motion capture)
system at 100 Hz. Each set of experiment data was logged
onto an onboard computer (Raspberry Pi 4) mounted on
the sensor suite. To solve the optimization problems in the
measurement calibration (Section V-A) and the anchor self-
calibration (Section V-B), we utilized the Ceres solver [24].

To validate each component of the proposed measurement
model, we used the following three measurement models:

1) Model A: The standard measurement model in (1).
2) Model B : A measurement model using the proposed

directional bias functions (2), (3) with Gaussian noise.
3) Model C : Our proposed measurement model in (5).

A. UWB Range Measurement Model Calibration

To calibrate the measurement models, we collected a
calibration dataset with 54,000 UWB range measurements
and a test dataset with 22,000. These measurements were ob-
tained as the sensor suite traversed through the anchor setup
illustrated in Fig. 3. The relative poses between the tag and
anchors were obtained using the MOCAP system. For each
measurement model described above, the calibration was
conducted using the maximum-likelihood estimation method
outlined in Section. II-C. We experimentally determined the
degree of the spherical polynomials K to be four, which
provided sufficient accuracy for our setup.

We evaluate the calibration results by comparing the
calibrated noise distribution with the measurement error
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w/ directional bias & Gaussian noise (Model B)

UWB range measurement error [m]

standard model & Gaussian noise (Model A)

w/ directional bias & Asymmetric noise (Model C)
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Fig. 4. The measurement error histogram computed by the calibration
results of (top) model A; (middle) model B; and (bottom) model C. The
dashed lines indicate the calibrated probability density functions of each
measurement noise model.

histogram derived from the test dataset, see Fig. 4. The
calibrated noise parameters and root mean squared error
of each measurement model can be found in Table I. The
analysis reveals that model B and model C exhibits lower
measurement errors compared to A, attributed to its compen-
sation of antenna effects through directional bias functions.
On the other hand, the calibration result of the model
C, which incorporates an asymmetric heavy-tailed noise
distribution, shows the closer match with the error histogram.
This indicates that our proposed model effectively reflects the
sources of error in range measurements. Additionally, Fig. 5
visually demonstrates that our model effectively reflects error
patterns from the line-of-sight angles.

B. Anchor Self-calibration

To validate the proposed anchor self-calibration method,
we gathered datasets in two environments: 1) an open space
without obstacles (Env. #1); and 2) a space containing
obstacles (Env. #2) to simulate stronger NLOS/multipath
effects, which can be seen in Fig. 1. The anchor placement
of both environments are shown in Fig. 3. In this experi-
ment, we obtained image measurements at 3Hz and utilized
COLMAP [21] for structure-from-motion. Cubic B-splines
were adopted for the continuous-time state representation,
with control node frequencies set to 5Hz for the pose spline
and 0.2Hz for the IMU bias splines. To compare the effect
of the measurement model, the anchor self-calibration was
performed using model A and B, adjusting the cost function
of (26) with each likelihood cost function.

Since the estimated results are expressed in a coordinate
system defined by the COLMAP, we transformed them to the
MOCAP coordinate system for accuracy evaluation by align-
ing the estimated state trajectory with the ground truth. The
root mean squared errors (RMSE) of total anchor estimation
results are presented in Table II. The orientation RMSE is
computed by ( 1

Na

∑Na

j=1 ∥∠(Rj(R̂j)
T )∥2) 1

2 , where Rj , R̂j

Calibration dataset
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measurement error predicted bias
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Fig. 5. Comparison of errors in UWB raw measurements (left) with the
bias values predicted by model C for both the calibration dataset (top) and
the test dataset (bottom), shown in the tag’s spherical coordinate system.

TABLE II
COMPARISON OF RMSE FOR DIFFERENT MODELS IN ANCHOR

SELF-CALIBRATION EXPERIMENTS

Model Env. #1 Env. #2
position orientation position orientation

A 14.9cm - 15.9cm -
B 9.2cm 30.3° 9.2cm 29.5°
C 8.7cm 30.4° 8.4cm 38.9°

denote the ground truth and estimate of the j-th anchor, and
∠(·) converts the rotation matrix to axis-angle representation.

In both environments, our measurement model C demon-
strates the superior accuracy in position RMSE. However,
we observed challenges in accurately estimating the anchor
orientation solely based on the directional bias of anchors in
UWB measurements. Nonetheless, this implies that even with
errors in anchor’s orientation, the accuracy of localization
system for mobile platforms is not significantly compro-
mised. In section V-C, we quantify the impact of these
estimation errors on localization performance.

C. Filtering-based State Estimation

In Section V-A, we demonstrated that utilizing the asym-
metric noise distribution effectively can capture error sources
in UWB range measurements. This distribution can be inte-
grated into a filtering-based state estimation method through
the proposed iterative update algorithm. For measurement
models using Gaussian noise, Huber norm-based update
method can be employed to mitigate the effect of out-
liers [11]. We compared the estimation results of our method
with standard extended Kalman filter (EKF) and Huber-norm
based update method, as summarized in Table III. For the
Huber norm-based update method, we modified the function
ψ(e) in (30) as

ψ(e) =

{
1
σ2 , for |e| < σ,
1

σ|e| , otherwise.
(37)

To ensure uniform calculation time suitable for real-time
systems, we limited the maximum number of iterations
to three, which proved adequate for convergence in our
experiments. For the prediction step of the filter, we integrate
IMU sensor readings based on [25].

We collected datasets comprising UWB and IMU mea-
surements from the same experimental settings in Section V-
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Fig. 6. The comparison of the estimated trajectories in Env. #2. For clarity,
we visualize a portion of the trajectories.

TABLE III
COMPARISON OF POSITION RMSE FOR DIFFERENT MODELS AND

UPDATE METHODS

Model Method
Env. #1 Env. #2

ground calibrated ground calibratedtruth truth
A EKF 17.5cm 16.9cm 22.2cm 19.9cm
A Huber 15.4cm 15.7cm 20.9cm 18.5cm
B EKF 13.7cm 14.2cm 17.3cm 17.3cm
B Huber 12.1cm 12.4cm 15.0cm 15.3cm
C Proposed 9.7cm 10.7cm 13.1cm 13.6cm

B. According to the update methods, we compared the
estimation results with the ground truth. The comparison
results are presented in Table III and visualized in Fig. 6.

Our proposed update method demonstrates superior per-
formance, with a reduction in position RMSE ranging from
40% to 45% compared to the standard method. Additionally,
we note that the RMSE of the state estimation results,
obtained using the anchor setup estimated through anchor
self-calibration in Section V-B, increases only by 4% to 10%
compared to the results obtained using the actual setup.

VI. CONCLUSIONS

In this paper, we introduce a UWB-based localization
system using a UWB range measurement model that ac-
counts for antenna anisotropy and NLOS/multipath effects.
We present a calibration method for our proposed model,
demonstrating its efficacy in reducing measurement errors
and capturing noise distribution. Furthermore, we validate
its effectiveness on our proposed UWB-based localization
system including continuous-time anchor self-calibration and
filtering-based real-time state estimation.

As part of our future work, we intend to conduct a rigorous
analysis of the proposed model alongside various models
aimed at enhancing the accuracy of UWB measurements
(e.g. [8]–[11]), focusing on both accuracy and computational
efficiency metrics. In addition, we aim to expand our method-
ology beyond TWR-based UWB range measurements to
encompass the time difference of arrival (TDOA) technique,
exploring their potential benefits and applications.

REFERENCES

[1] J. Tiemann, F. Schweikowski, and C. Wietfeld, “Design of an uwb
indoor-positioning system for uav navigation in gnss-denied environ-
ments,” in International Conference on Indoor Positioning and Ondoor
Navigation, 2015, pp. 1–7.

[2] T. H. Nguyen, T.-M. Nguyen, and L. Xie, “Tightly-coupled ultra-
wideband-aided monocular visual slam with degenerate anchor con-
figurations,” Autonomous Robots, vol. 44, no. 8, pp. 1519–1534, 2020.

[3] Y. Cao and G. Beltrame, “Vir-slam: Visual, inertial, and ranging slam
for single and multi-robot systems,” Autonomous Robots, vol. 45, pp.
905–917, 2021.

[4] Y. Song, M. Guan, W. P. Tay, C. L. Law, and C. Wen, “Uwb/lidar
fusion for cooperative range-only slam,” in International Conference
on Robotics and Automation, 2019, pp. 6568–6574.

[5] G. Wang and W. Kong, “Angle-dependent pulse distortion in uwb
radiation and its impact on uwb impulse communications,” Electronics
Letters, vol. 41, no. 25, p. 1, 2005.

[6] R. Ye, S. Redfield, and H. Liu, “High-precision indoor uwb local-
ization: Technical challenges and method,” in IEEE International
Conference on Ultra-Wideband, vol. 2, 2010, pp. 1–4.

[7] J. Tiemann, J. Pillmann, and C. Wietfeld, “Ultra-wideband antenna-
induced error prediction using deep learning on channel response
data,” in IEEE 85th Vehicular Technology Conference (VTC Spring),
2017, pp. 1–5.

[8] A. Ledergerber and R. D’Andrea, “Ultra-wideband range measurement
model with gaussian processes,” in IEEE Conference on Control
Technology and Applications, 2017, pp. 1929–1934.

[9] A. Ledergerber and R. D’andrea, “Calibrating away inaccuracies in ul-
tra wideband range measurements: A maximum likelihood approach,”
IEEE Access, vol. 6, pp. 78 719–78 730, 2018.

[10] W. Zhao, A. Goudar, J. Panerati, and A. P. Schoellig, “Learning-based
bias correction for ultra-wideband localization of resource-constrained
mobile robots,” arXiv preprint arXiv:2003.09371, 2020.

[11] W. Zhao, J. Panerati, and A. P. Schoellig, “Learning-based bias
correction for time difference of arrival ultra-wideband localization of
resource-constrained mobile robots,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3639–3646, 2021.

[12] J. Khodjaev, Y. Park, and A. Saeed Malik, “Survey of nlos iden-
tification and error mitigation problems in uwb-based positioning
algorithms for dense environments,” annals of telecommunications-
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