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Passive Decomposition of Mechanical Systems
With Coordination Requirement

Dongjun Lee and Perry Y. Li

Abstract—We show the fundamental passive decomposition property of
general mechanical systems on a -dim. configuration manifold , i.e.,
when endowed with a submersion � , where is a -dim.
manifold � �, their Lagrangian dynamics with the kinetic energy as
the Lagrangian can always be decomposed into: 1) shape system, describing
the -dim. dynamics of � � on ; 2) locked system, representing the
� �-dim. dynamics along the level set of ; and 3) energetically-
conservative coupling between them. The locked and shape systems also
individually inherit the Lagrangian structure and passivity of the original
dynamics. We exhibit and analyze geometric and energetic properties of the
passive decomposition in a coordinate-free manner. An illustrative example
on SO(3) is also provided.

Index Terms—Coordination, decomposition, differential geometry, La-
grangian systems, passivity.

I. INTRODUCTION

Consider a mechanical system, evolving on a �-dim. configuration
manifold � with its kinetic energy as the Lagrangian and endowed
with a smooth submersion � � � � � with ���� � � speci-
fying a certain coordination aspect (e.g., internal posture or grasping
shape), where � �� is the system’s configuration and� is a �-dim.
manifold with � � �. In this technical note, we show a fundamental
property of the mechanical system in this setting, i.e., its �-dim. La-
grangian dynamics on � can be decomposed into: 1) shape system,
describing the �-dim. dynamics of the coordination aspect ���� on
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� (e.g., grasping shape); 2) locked system,1 representing the system’s
�����-dynamics along the level set of � (e.g., motion of the grasped
shape); and 3) inertia-induced energetically conservative coupling be-
tween them, which is a function of ��� ��� and quadratic in ��. The (de-
coupled) locked and shape systems also individually inherit the La-
grangian structure and passivity of the original dynamics. Due to these
preserved Lagrangian structure and passivity, we call the decomposi-
tion passive decomposition.

This passive decomposition then allows us to achieve: 1) simulta-
neous and separate locked-shape control, which is necessary, e.g., for
the precise multirobot grasping, where the grasping shape ���� (i.e.,
shape system) and the grasped object’s behavior (i.e., locked system)
should be controlled together with no crosstalk between them; and 2)
exploitation of the (preserved) Lagrangian structure and passivity for
the locked and shape control synthesis (e.g., passivity-based control;
stability via passivity [3]). Due to these practically-useful properties,
passive decomposition has been applied to various applications [3]–[6].
However, these prior results are limited to � � �� and � � ��

(thus, inapplicable, e.g., to SO(3)—see Section IV) and some funda-
mental geometry-related questions are not answered there (e.g., why
the shape system is representable by a Lagrangian-like dynamics on� ;
why the locked-shape configuration decomposition is generally impos-
sible, etc.). In this technical note, we present passive decomposition on
a manifold� in a coordinate-free manner, and delineate its important
geometric and energetic properties. A portion of this technical note was
presented in [7] and [8].

Some relevant results in the literature and their comparison with our
results in this technical note are as follows: 1) constrained dynamics
approach [9], [10], which assumes ���� � �, thus, is not suitable when
���� needs to be controlled (e.g., squeezing grasping); 2) feedback lin-
earization [11], [12], which typically aims to eliminate the underlying
Lagrangian dynamics and passivity, rather than exploit them; and 3)
impedance control [13], in which the locked-shape coupling is usually
left uncompensated for; 4) power-continuous decomposition of [14],
which is limited only to the curve-tracking (i.e., � � � � �) and
��-coordinates; and 5) Lagrangian reduction [1], [2], from which we
adopt the terms, “shape” and “locked”, yet, symmetry is required and
passivity overlooked there.

The rest of the technical note is organized as follows. Section II intro-
duces some preliminary materials. Geometric and energetic properties
of the passive decomposition are detailed in Section III. An illustrative
example is given in Section IV. Section V concludes the technical note.

II. PRELIMINARY

A. Geometry of Mechanical Systems

We consider a mechanical system, whose configuration � evolves on
a �-dim. smooth manifold � with the velocity � �� �� � ��� and
the external/control force �� 	 � � �

��, where ��� and � �

�� are
respectively the tangent and cotangent spaces at � ��. We denote its
(differentiable Riemannian) inertia metric by 
 [15], which assigns,
for each � ��, an inner product �� 		 on ���, defines the system’s
kinetic energy s.t.

���� ��
�

�
�� ������ �����		 (1)

1We may view the coordination aspect���� as “output” and the locked system
as “internal dynamics”. This viewpoint, however, we do not pursue here, since:
1) ���� specifically describes (configuration) coordination aspect among �; 2)
equally-rich controlled behaviors of the locked and shape systems are often de-
sired/attainable; and 3) our passive decomposition is influenced by the locked-
shape concepts of [1], [2].

0018-9286/$31.00 © 2012 IEEE
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and also begets a linear isomorphism ���� � ��� � � �

�� as de-
fined by

�������� ��� �� ����� ����� ��� �� � ��� (2)

where � � � � �

�� � ��� � � is the standard pairing. We also
assume that � is paracompact and second-countable [16].

The dynamics of the mechanical system on � is then given by the
Lagrange equation2

����� ��� � � � � (3)

where � is the Levi-Civita connection on � [15] with the following
properties: i) it is affine

������ � � ���� � 	�� �

���
 � �� ���
 ����

����
 � � ���
 � 	����
 (4)

where the last equality is called Leibniz property of �� ; ii) it is com-
patible w.r.t. the � -metric

	���
���� � ����
� ���� ��
������ (5)

and, iii) it is torsion-free

� ��� 
 � �� ��
 
��� 
 ��� 
 � � � (6)

for all �� 
� � � ��� and �� 	 � �����, where ����� is
the set of all real smooth functions; ��� (or, ����, resp.) is that
of all smooth vector (or, covector, resp.) fields on �; 	�� is the
Lie derivative of � along � ; and [,] is the Lie bracket, defined by
	���� �� � 	�	� � 
 	� 	�� . In (3), we assume that all the ex-
ternal forces (e.g., gravity) are embedded in � . This equation (3) can
also capture multiple mechanical systems, when formulated on their
product manifold [19].

In this technical note, we assume that a certain coordination aspect
of (3) (e.g., internal posture or grasping shape) can be described by the
image 
��� of a smooth map


 ���� � � � � (7)

where � is a �-dim. smooth manifold. We also assume that 
 is a
submersion [15], i.e., its push-forward3 
� � ��� � ������ is sur-
jective 
� � �. Then, each level set

����� �� �� ���
��� � 
���� (8)

defines a ��
��-dim. submanifold in �, and their collection forms
a foliation [20]. See Fig. 1. We will call 
 coordination map and �
coordination manifold.

From the compatibility (5), we have �������� � ��� ���� �� �
�� � �� ��. Integrating this, we can then show the passivity of (3): for
all 	� � �

	�




�� � �� ���� � �� 	� �
 ���� � 
����� (9)

Our passive decomposition aims to decompose the dynamics (3) ac-
cording to the coordination map 
 and the � -metric, while preserving

2The term� � of (3) should be understood as follows [15], [17]: for ���� �
� �, � ���� � �� � �������, where ��� � ��� are (local)
extension vector fields [18] to ����� and ���� at ���� s.t. ������� � ����� and
� ���	�� � ��	�, �	 � �� � 
� � � 
� for small 
 � �.

3We use � to denote both � � � � � � � and � � ��� �
�� �. Similar also holds for � and 
 .

Fig. 1. Geometry of passive decomposition.

the Lagrangian structure and passivity of (3), which are often useful for
control synthesis (e.g., passivity-based control [21]; stability via pas-
sivity [3]).

III. PASSIVE DECOMPOSITION

A. Tangent and Cotangent Space Decomposition

Given the coordination map 
 and the� -metric, we can decompose
the tangent space ��� of (3) s.t., at each � � �

��� � ��� �� ��� � (10)

where3

��� � �� 
���
�� � 
��� �� � ����
���� � ��

��� � �� 
��� �� � �������� ���� � �� 
� � ��� � �

Collecting ��� � and ��� � over � � �, we can then construct
the tangential and normal distributions, �� and ��, s.t. ����� ��
��� � and ����� �� ��� �. Here, �� and �� are both regular
with ������� � �
� and ������� � �, 
� ��. Also, �� is
integrable with ����� as its integral manifold; �� is generally not.

With the tangent space decomposition (10), the cotangent space
� ��� also splits s.t.

� ��� � � ��� �� � ��� � (11)

where

� ��� � �� 
��� � � � ������� ��� � �� 
�� � ��� �

� ��� � �� 
��� �� � � �������� �� � �� 
� � ��� � �

Collecting � ��� � and � ��� �, we can similarly construct the tangen-
tial and normal codistributions, �� and ��, s.t. ����� �� � ��� �
and ����� �� � ��� �. Note that �� and �� annihilate �� and ��,
respectively. Using (10) and (11), we can also decompose� � ���
(or� � ����, resp.) s.t.� � ����� (or � � �����, resp.)
with �� � ��, �� � �� (or �� � ��, �� � ��, resp.).

B. Decomposition of Dynamics

Using (10), we decompose the velocity � �� �� � ��� of (3) s.t.

� � �� � �� (12)

where we call 1) �� � ��� �, locked velocity, since, being tangent
to �����, it will describe the motion of (3) when the coordination is
locked (i.e., �
��� � � with �� � �); and 2) �� � ��� �, shape
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velocity, which specifies how the coordination aspect ���� changes on
� s.t.

�

��
���� � ����

� � ��� � ����
�� � ������ � (13)

Note that the decomposition (12) is orthogonal and isometric, i.e.,
����� ���� � � and ���� ��� � ����� ����� ����� ����. Similarly,
we can also decompose 	� � � � ��� s.t.

	 � 	� � 	�� � � �� � �� (14)

where 
� � � ��� � and 
� � � ��� � respectively affect the motion
of (3) along ����� and the coordination aspect ���� on � .

Using these, we can then decompose the Lagrangian dynamics (3)
on � s.t.

�� ��� ���� ���
��
�
���� ���

��
�
���� ���

��
�

���� ���
��
�

��� � �� � 	� � 	� (15)

from which we can obtain4

��� ���
��
�
� ���� ���

��
�
� �� � 	� (16)

��� ���
��
�
� ���� ���

��
�
� �� � 	� (17)

where 1) we call ��� ���
��
�

in (16), locked system dynamics, which
describes the �� � 
�-dim. dynamics of (3) along the level set
�����—some of its geometric properties are detailed in Section III-E;

2) we call ��� ���
��
�

in (17), shape system dynamics, which spec-
ifies the 
-dim. dynamics of ���� on � , as formally elaborated
in Section III-D; and 3) ��� ���

��
�

and ��� ���
��
�

define the
locked-shape coupling, which is energetically conservative, a function
of ��� ���, and quadratic in ��, as shown in Section III-C.

C. Energetics of the Passive Decomposition

The decomposition (12) and (14) also decomposes the kinetic energy
(1) and the power of (3) s.t.

���� �
�

�
����� �����

�

�
����� ����

and ��� �� � ���� ���� ���� ��� (similar also holds for 	 ). From
(2), (5), (16), and (17), we also have

�

��
��������

�� �����	�� ���� ��� ���
��
�
� �� (18)

�

��
��������

�� �����	�� ���� ��� ���
��
�
� �� (19)

where ����� 	� ����� ������ and ����� 	� ����� ������ are the
locked and shape kinetic energies. This shows that both the locked
and shape systems have three power ports: control port, ���� ��� and
���� ���; external force port, �	�� ��� and �	�� ���; and locked-
shape coupling port, ���� ���

��
�
� ��� and ���� ���

��
�
� ���.

A remarkable property of our decomposition is that the locked-shape
coupling is energetically conservative, that is

��� ���
��
�
� �� � ��� ���

��
�
� ��

4As in the constrained dynamics approach [9], [10], if the coordination is
locked with ���� � � and � � �,��� � � and��� � � vanish, and
��� � � and ��� � � respectively reduce to the induced Levi-Civita
dynamics on � and the second fundamental form [15, Ch.6]. In this technical
note, we are yet interested in directly controlling ���� on � .

� ��� ���
�� ����� ��� ���

�� ����

� 	 �����
�� ���� � �� (20)

Let us also write this coupling in coordinates. For this, define a basis
set of ��� by 

��� 
��� � � � � 
���, s.t. ��� � � �
��

��� � � � � 
�����
and ��� � � �
��

������� � � � � 
���. Define also the Christoffel’s
symbols 
������� by �	
	� 
�� �	 �

���

�������
�� [15]. Then, using

�� � �
��� ��������� �

�
��� 
��
�� and (4), we can write

�� ���
��
�
�

�

���

���

���

�

�������

��
�� 
�
�
�����
�� (21)

and �� ���
��
�

� �
���

�
�������

���
��� ��
�� 
�

�
�����
�� . This

shows that the locked-shape coupling is quadratic in ��, yet, still a
function of ��� ���, which are usually available in practice.

In many applications, this locked-shape coupling, ��� ���
��
�

and
��� ���

��
�

, needs to be suppressed.5 This is particularly so for faster
operations, since it is quadratic in �� (see (21)). For this, we design the
decoupling control ����� ��� s.t.

� � ��� ���
��
�
���� ���

��
�

��� �	
��
����� �������

��
 (22)

where �
 is to embed additional control (Section III-F). Then, from
(16), (17) and (18), (19) with this ��, we can see that both the (de-
coupled) locked and shape systems will have the dynamics structure
and passivity similar to (3). Moreover, this decoupling control �� itself
is passive6 (i.e., ���� �� � � from (20)), thus, consequently, the orig-
inal system (3), when decoupled with (22), will still possess the same
passivity (9) with � replaced by �
. Due to this preservation of the
Lagrangian structure (3) and passivity (9) and this passive decoupling
property, we name our decomposition passive decomposition.

D. Shape System on Coordination Manifold �

It is often desired to put some priority on the task of controlling
the coordination aspect ���� (e.g., maintaining grasping shape). In this
Section III-D, we show that this coordination aspect ���� can be de-
scribed on � , so that we can design and analyze a control for it solely
on the coordination manifold � with a lesser dimension 
 � �.

For this, note that we already have the kinematics of ���� on� , i.e.,
�������� � ����

�� � ������ . To describe the dynamics of ���� on
� , we define shape system connection �� 	 ���
 �������
������ s.t.

��
��

� 	� ������
�� (23)

where � � ���, � � � ������ and � � � �� with
� � � ���

�. Here, given � � � ������, � an unique � � � ��,
since, being surjective, �� defines a bijective map between ��� �
and ������ , �� � � [8]. Recall also that submersions define open
mappings [20]. Define also the induced ��-metric on � by

��� � �
�
�

�

	� ��� � �
�
�

�

(24)

for ��� � ���
�
� and ��� � ���

�
� with ��� � �

�
� � ��� �.

5In the multirobot fixture-less grasping with � and � respectively de-
scribing the grasping shape and the grasped object’s motion, with such a
crosstalk, driving the grasped object via � can perturb the grasping shape
���� (e.g., dropping the object).

6This passivity of � is also robust, since, even with an incorrect estimate
�����, we still have � �� � �� � � (i.e., (20) is invariant w.r.t. the choice

of �����), although, in this case, the locked-shape decoupling would not be
perfect.
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The shape system connection �� (23) then allows us to map the
shape system dynamics of (17) to � s.t.

��
������

�� � �� �� ���
��
�

which, with the kinematics relation ����
�� � ��������, now com-

pletes the (second-order dynamics) description of ���� on � . The
affine property and compatibility of �� w.r.t. the ��-metric, to be
shown in the following Theorem 1, imply that this “mapped” shape
system dynamics of ���� on � again possesses the Lagrangian struc-
ture and passivity.

Theorem 1: The shape system connection�� (23) has the following
properties: i) it is affine

��
����� �� � 	��

��
� � 
��

� ��

��
��� � � ��� ���

��
� ���

��
�

��
��	� �� � 	��

��
� � ���	�� � (25)

ii) it is compatible w.r.t. the ��-metric

�����
�� ���� � ��

��
�� �� � � ����

��
� (26)

for any 	� 
 � 
����, ��� � � ���, and � �� �� � ������.
Proof: The third item of (25) can be shown s.t.

��
��	� �� ������	�

�� � �� 	���
� � ���	�� �

� 	��
��

� � ���	�� �

(other items can be proved similarly), while the compatibility (26) can
be proved s.t., with (5)

�����
�� ����������

�� ����

� ����
��
�

� �� � ����
��
�

� � �

� ��
��

�� �� � ��
��

�� � �

where � �� �� � �� are the unique solutions of � � � ���
�,�� �

���
�, as stated after (23).

The shape system connection�� (23) can be thought of as the “pro-
jected connection” on �� [22], transported by �� to� . This�� may
also be thought of as a connection over the map � [18]. In particular,
when restricted on ����� becomes the (Levi-Civita like) unique tor-
sion-free and compatible connection over � w.r.t. the ��-metric—see
[8], [18].

E. Projection of Locked System

Suppose that there is a smooth submersion � � � � �, where
� is a �� 	 ��-dim. smooth manifold. Suppose also that, similar to
(13), its push-forward �� � ��� � ������ satisfies the following
projectability condition:

�

��
���� � ����

� � ��� � ����
�� � ������ (27)


� � � and 
� � ���. If there exists such a projection pair �����,
we can then project the locked system of (16) to � as done for the
shape system in Section III-D, and, consequently, the original system
(3) can be passively configuration-level decomposed7 into � and �
(i.e., passive configuration decomposition [23]), on each of which we
can control ���� and ���� individually. The next Proposition 1 shows
that the integrability of �� is necessary for such a pair ����� to exist,

7In general, the decoupling control (22) is still needed in this case—see [8,
Prop.6, Sec.3.5].

which is in general not granted (e.g., Section IV). Note that, in contrast,
�� is integrable from its construction (10).

Proposition 1: Suppose there exists a projection pair ����� as de-
fined above. Then, �� is integrable.

Proof: Since � is a smooth submersion, we can find a �-dim.
submanifold ����� �� �� � �
���� � �����
� � �. Also, from
(27), we have ������ � �, 
�� � ����� and 
� ��, implying that
�� � �	
����. Now, suppose �	
���� �� ��. Then, from (10), there
should exist a �� � �� s.t. ������ � �, which is yet impossible,
since, similar to �� (see the statement after (23)), �� defines a bijective
map between ����� and ������, 
� � �. Thus, �� � �	
���� �
������� 
� � �, implying that �� is integrable with ����� as its
integral manifold.

If a projection pair ����� does not exist (e.g., nonintegrable ��), the
locked system cannot have a �� 	��-dim. configuration ����, since,
on any ���	, the most basic position-velocity kinematics relation is
violated (i.e., �������� �� ����

�� instead of (27)). In fact, Proposition
1 can be used to check the impossibility of the existence of such a
locked system configuration ����, given the coordination map � and
the underlying dynamics�. Of course, if we regulate the shape system
s.t. ���� � �, the locked system will have a well-defined configuration
on �
 (see the footnote 4).

Converse of Proposition 1 holds only locally, since, even if �� is in-
tegrable 
� � �, a single map � � �� � satisfying (27) in general
exists only locally [24]. Theorem 2 below shows that, if � is designed
s.t. its foliation is “parallel” w.r.t. �, there exists a projection pair
�����. We first recall the following notions [15]. Let � � ��� �
 � �
be a smooth curve on�. A vector field � � ��� is parallel along �
w.r.t.� if� ��� � �,
� � ��� �
. For each �� � ������, there exists a
unique parallel vector field �������� along � with �������� � ��. The
(linear) parallel transport map, ����������� � ������ � ������, is
then defined by ��������������� �� ��������.

Theorem 2: Suppose that � of (3) is complete and simply-con-
nected, and �� is invariant w.r.t. the holonomy group [25]

���� �� �����������
���� ��� ���� ���� � ���� � �

for all � � �. Then, a projection pair ����� exists.
Proof: Invariance of �� w.r.t. ���� also implies that of ��,

since ����������� maps ������ to ������ and preserves the orthog-
onality (i.e., ���
� ���� � ��������������
��

�

����������� ��, 
�
� �
 �
������). Then, following [26, Prop. 5.1,Ch. IV], �� is integrable and
has a �-dim. integral manifold ��
� ��, which is complete and to-
tally geodesic (i.e., every geodesic of (3) stemming from �� stays on it
all the time). Similarly, ����� is also complete and totally geodesic.

Let us choose a point �� � � and a smooth curve ���� joining ��
and a point � � � s.t. ���� � �� and ���� � �. We can then de-
fine the projections of ���� on ���� � and on �� s.t.: ����� � ���� �

with ����� � �� and ������ � ��� ����� �������, where ���� ��

������������ ������
�; and ������ � �� , with ������ � �� and ������� �

��� ����� �������, where ���� �� ������������ ������
�. From these,

we can also construct two maps, �� � � � ���� � and ��� � � �
�� s.t., given � � �, ����� �� ����� and ������ �� ������. As
shown in [26, pp.187], both ����� and ������ depend only on � (i.e.
end-point of ����), not on a particular shape of ����. Furthermore, with
�� and �� being invariant w.r.t. ���� and � being complete and
simply-connected, � is isometric to ���� � � �� , and the com-
bined map � �� ���� ���� defines an (bijective) isometry of � onto
���� � � �� (de Rham decomposition [26, Th.6.1, Ch. IV]). Since
the construction of ����� uses only the tangential component � �������,
�� also satisfies (27). Thus, �������� �� defines a locked system pro-
jection pair.
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This Theorem 2 is granted if � is Euclidean and ����� are flat
planes. See [4], [6] for some applications of this “flat” decomposition.
Simple connectedness of �, although limited (e.g., SO(3) is not), is
also assumed in Theorem 2 to use de Rham decomposition [26, Th.6.1,
Ch. IV], which makes Theorem 2 a global result.

F. Passivity-Based Control Design Example

We want to achieve the following two control objectives simultane-
ously and separately: 1) ������ ��� ���, where ��� ��� � ��� � is a de-
sired locked velocity at ����; and 2)����� ��, where �� � � is a con-
stant desired coordination shape. To manifest utility of the preserved
Lagrangian structure and passivity, we design proportional-derivative
(PD) control laws for both of these objectives.

Let us write �� in (22) s.t. �� � ��� ���� , where ��� � � ��� � and
��� � � ��� � are, respectively, the locked and shape system controls.
We first design ��� s.t.

��� �� � � ���
�
�

�

������ �� � ��� � 	� (28)

where ����� � ��� � � � ��� � is a dissipation field on � s.t.
��������
 ��	 
 �����
 ��		, ��� � ��� � with � � �. Then, the
closed-loop locked system dynamics becomes

��� ��

��
�
������


� � �

where 
� �� �� � ��� , and, with ����� �� ��
�
 
�		�� and (5),
we have ��������� � ����


�
 
�	 � ��������, implying that

� � � exponentially.

We also design ��� s.t.

��� �� �� ��� ���������
� � ��� ������ � 	� (29)

where: i) ����� � ��� � � �� � is a dissipation field on � defined
similarly as ��; ii) ������ is the one-form of a nonnegative potential
�� � � � 
 measuring the distance between ���� and ��; and iii)
�� � � ������ � � ��� is the pull-back of � defined s.t.,

�����
 �	� � ���
 �����	� (30)

for any � � ��� and �� � � ������ , with ���� � � ��� � (i.e.,
��� � � ��� �), since, from (13), �����
 �	 � ���
 �	 � �, �� �
��� �. Note that the PD action of ��� in (29) is designed first on �
and then pulled back to � by ��.

From (17) with (22) and (29), we can then write the closed-loop
shape system dynamics on � s.t.

������
�
�����

� ��� ���������
� � ��� ������ � � (31)

where we use the definition of�� (23) and the fact that ������� �
���

� (from (30) with (2) and (24)). Define ����� �� ���
�
 ��		���

��������. Then, using Theorem 1 and ������������� ����
 ����	,
we have ��������� � �������

�
 ���
�	 � �; with some more

assumptions (e.g., [27]), we can further establish �����
 ���
�� �

���
 ��—see [8] for more details on this.
Note that the locked and shape systems’ Lagrangian structure and

passivity, intentionally preserved by the passive decomposition, are
crucial for these relatively simple PD-controls (28), (29) to work here.
Note also that we achieve simultaneous and separate locked-shape con-
trol, which is often necessary in many applications (e.g., grasping). For
this, we assume full control actuation and full sensing of ��
 ��� [e.g.,
to implement (22) with (28) and (29)]. Notice however that the pas-
sive decomposition itself and its properties in Sections III-A–III-E still
hold even with control/sensing limitations; control design addressing
thereof is a topic for future research (see [4], [23], [28] for results in
this direction).

IV. ILLUSTRATIVE EXAMPLE: COORDINATED ROTATION OF

TWO AGENTS IN SO(3)

We consider two agents, each evolving on SO(3) with the following
dynamics: for the �-th agent (� � 	, 2)

���

��
� ��
���

�
 ��
���

��
� 
�����

��� � �� (32)

where �� � �
��� is the rotation matrix (i.e., � � �
��� �
�
���), �� � ����
���
 ���
 ���� � 
��� is the inertia, �� �

���
 ���
 ����

� � 
� is the angular rate, �� � 
� is the control,
all represented in the body frame, and 
��� � 
� � ����� is defined
s.t., for �
 � � 
�, 
���� � � � �.

To describe the coordination aspect, following [29], we define � �
�
���� �
��� � �
��� s.t.

����
��� �� ��
���

with � � �
���. Using the property of 
���
� [21, pp.123], we can

then write ����� � ��
���
�� ���

� �����
�

, and, since ��
� �� is

nonsingular, we can further show that

�� � �������
 �� � ��� ��
��

where �� �� 
��
���
������ � 


���, � �� ����
��
 ��� � 

���,

and �� � 

��� identifies �� (i.e., columns of �� constitute bases

of the vector space ��). Here, note that �� � � if � � ��. �� and
�� are also orthogonal with each other w.r.t. the inertia metric � .

We can then write � �� 
������ and � �� 
��� ��� � 

� s.t.

� � 
�� ���

�			


�


��


 � � 
�� ���

�	 	


�

��

where ��
 �� identifies ��
 �� respectively, and, rewriting the dy-
namics in (32) using this, we can achieve coordinate expressions of
(15) s.t.8

�
 ��
 ��
�
 ��
��� � �
 (33)

�� ��� ����� ���
�
 � �� (34)

where the terms with �

 �
 and �� 
 �� are from
��� ���

��
�

and ��� ���
��
�

, while those with �
� 
 ��


from ��� ���
��
�

��� ���

��
�

, respectively. We can also show that
�
� � ���

�
 , and ��
 � ��
 and ��� � ��� are skew-symmetric
(e.g., [3], [8]), manifesting that the Lagrangian structure and passivity
of (32) are preserved in (33), (34) and the locked-shape coupling is
passive.

We can also derive the shape dynamics on � in coordinates as fol-
lows. Define �� in (34) s.t. �� �� ��
�
 � ���, and denote by
�� � �

��� �
�
������ the shape system velocity on� (i.e., ������)

and by �� � �
��� �

�
���� a control designed on � , which will be

pull-backed via �� to ���(cf. (29)), where, with an abuse of notations,
we denote bases of ������ and � ������ by ����� and ��� , respec-
tively. We can then have

�� � ���� 
 ��� � ����

where �� � 
��
�
 �

�
�
 �

�
��
�

, �� � 
� �� 
 �
�
� 
 �

�
� �
�

, and the ��-th
components, ���� and ���� , of �� and �� � 
��� are given by
����
�
�� � �

��� ��������� and ������� � �
��� �

�
���


�
�
�,

with �
� and �
�� (� � �, 5,6) being bases of ����� and �����,
respectively. Here, �� is invertible (due to the statement after (23))
and also ��

� � �� (since ���� � ���� from (30)). Define also the

8These expressions (33), (34) can also be obtained by applying
� � � �� � � �� and � � � �� � � ��
to (15) as done for (21), where � ��� � ��	
��� � �� � �� �,
� ��� � ��	
��� � �� � �� �, � ��� � ��	
��� � �� � �� � and
� ��� � ��	
��� � �� � �� �, with ��� � �� � � � .
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shape metric on � by ���� �� �������� �������� . Then, from (24)
with ���� � �������� ��������, we have �� � ���� ���

��
� . Using

these relations with ��� � ���� ��� � ���� ����
��
� ��, we can then

rewrite (34) s.t. 9

�� ��� �	��� � 
� (35)

where 	� �� ���� 	��
��
� ��� ����

��
� with ���� �	� skew-sym-

metric. This (35) is the shape system dynamics mapped to� . This also
means that (34) (without 	����) is equivalent to (35), thus, we can
choose either (34) or (35) to describe the shape dynamics on � .

We also write the controls (28) and (29) in coordinates s.t.


� �	���� � �� ���
� �	��

�
� ��� �� � ��

� (36)


� �	���� ��� ���� � �
�� ��� (37)

where ��
���� � �

� is the desired locked velocity, ��� �� � �
��� are

the dissipation gains, and 
���� �� ��	� 
��
��	�
�	���, � � �, is

a potential defined on � � ���	� [29]. Then, we have

�
�
��

� �
� ����� � �
 � � � �
 �����

where the first equality is from (30), the second equality is due
to [29, Eq.(4)] with �
 �� ��
�� �
�� � �� and �
� ��

����	�
� 	� �	�

� 	��
�
�
�

, ��� �� � ��� �� or (2,1), and the last
equality is because 
� is a function only of �. This then al-
lows us to compute ���
�� ��� � ��

�	
��

� for (37) with

������ � ��
� ������ .

Using (36), (37), we can then control the shape and locked systems
(i.e., attitude coordination; coordinated rotation) simultaneously and
separately. Note that, since � � ���	� 	 ���	�, all the previous
��-coordinates passive decomposition results [3]–[6] are not appli-
cable here.

V. CONCLUSION

We reveal the fundamental passive decomposition property of the
mechanical system on a manifold� with a submersion � ��
 � ,
which allows us to achieve simultaneous/separate locked-shape con-
trol while exploiting the system’s (open-loop) Lagrangian dynamics
and passivity. A particularly interesting future research topic is how
to include nonholonomy, symmetry, under-actuation and partial state
sensing. See [4], [6], [23], and [28] for some results along this line.
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