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Abstract— In this paper, we introduce time-correlated model
predictive path integral (TC-MPPI), a novel approach to
mitigate action noise in sampling-based control methods. Unlike
conventional smoothing techniques that rely on post-processing
or additional state variables, TC-MPPI directly incorporates
temporal correlation of actions into stochastic optimal control,
effectively enforcing quadratic costs on action derivatives. This
reformulation enables us to generate smooth action sequences
without extra modifications, using a time-correlated and con-
ditional Gaussian sampling distribution. We demonstrate the
effectiveness of our approach through simulations on various
robotic platforms, including a pendulum, cart-pole, 2D bicopter,
3D quadcopter, and autonomous vehicle. Simulation videos are
available at https://youtu.be/nWfJ2MAV2JI.

I. INTRODUCTION

Model predictive control (MPC) is a powerful framework
for managing robotic systems. It optimizes a future trajectory
while adhering to state and action feasibility, dynamics, and
safety constraints. Traditionally, gradient-based optimization
techniques [1], [2] have been widely employed due to their
flexibility and robustness. Despite their success, these meth-
ods often rely on differentiable objectives, dynamics, and
constraints, limiting their applicability to non-differentiable
problems. Moreover, their computational complexity often
necessitates simplified or linearized dynamics, potentially
compromising the accuracy of the solution.

In contrast, sampling-based methods do not require the
control problem to be differentiable and can effectively
accommodate nonlinear dynamics. They also tend to explore
the solution space more broadly, which helps to avoid poor
local optima. Nonetheless, the sampling-based methods face
considerable challenges, such as low sample efficiency and
inherent noise, which can result in jittery actions. In this
work, our primary focus is mitigating such noisy actions
while ensuring optimality and sample efficiency.

The proposed method, time-correlated model predictive
path integral (TC-MPPI), is inspired by stochastic optimal
control with dynamic extension, where action derivatives are
treated as extended state variables to ensure action smooth-
ness. However, dynamic extension also increases the number
of state variables, reducing sample efficiency. To address
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Fig. 1. Markov chains of the (top) extended and (bottom) time-correlated
system. Blue nodes represent original system states, orange nodes denote
original system actions and their derivatives, and yellow nodes indicate the
mean of action nodes. Gray nodes represent the initial state, previous actions,
and extended states that do not influence the future states.

this, we reformulate the control problem by incorporating the
temporal correlation of actions, as illustrated in Fig. 1. This
reformulation adjusts the sampling mean and covariance by
introducing quadratic costs on extended variables and a con-
ditional distribution to maintain causality in time-correlated
sampling. With this adjustment, the sampling distribution
generates smooth action sequences without requiring post-
processing or additional state variables. Notably, TC-MPPI
integrates action smoothing within the stochastic optimal
control rather than merely penalizing action derivatives.

Model predictive path integral (MPPI) [3], [4] is a leading
approach for sampling-based real-time trajectory generation.
Multiple MPPI variants have been developed to enhance
performance. For example, linearized dynamics and control
laws improve robustness and sample efficiency [5]–[7]. In
safety-critical applications, conditional value-at-risk [8], [9]
and control barrier functions [10] have been incorporated.
To improve sampling distributions, techniques such as con-
ditional variational autoencoders [11], normal log-normal
distributions [12], adaptive importance sampling [13], and
Stein variational gradient descent [14] have been employed.
Yet, these advancements have not fully addressed the action
noise. A notable exception is smooth-MPPI (S-MPPI) [15],

https://youtu.be/nWfJ2MAV2JI


which introduces a lifting strategy to separate the action from
the sampling space, producing smooth action sequences.
While effective, the performance of S-MPPI can degrade
with fewer samples or longer prediction horizons due to the
increased complexity. In contrast, our work achieves action
smoothing without relying on post-processing or additional
state variables, ensuring smooth action sequences while
preserving both optimality and sample efficiency.

The rest of the paper is organized as follows: Section II
introduces key components of the stochastic optimal con-
trol problem and the MPPI algorithm; Section III details
the proposed TC-MPPI algorithm; Section IV demonstrates
the algorithm across various robotic tasks; and Section V
concludes the paper.

II. PRELIMINARY

This section outlines the theoretical background of model
predictive path integral (MPPI) and offers intuitive insights
into the MPPI algorithm to enhance understanding. To ex-
plore the details, let us consider a discrete-time system:

xt+1 = ft(xt, vt) (1)

where xt ∈ Xt is the state, vt ∈ Ut ⊆ Rnu is the action,
and ft : Xt × Ut → Xt+1 is the transition model at time
step t ∈ Z. The system exhibits stochastic behavior, with the
action being normally distributed as

V ∼ QU,Σ := N (U,Σ) (2)

where V := v0:T−1 is the action sequence, U := u0:T−1

is the mean input sequence, ut ∈ Ut is the mean input,
Σ := Σ0:T−1 is the block diagonal covariance matrix,
Σt ∈ Snu

++ is the positive definite covariance matrix, and
T ∈ Z++ is the horizon length. For simplicity, a sequence
of vectors ⋆t is denoted as ⋆a:b := (⋆a, ⋆a+1, . . . , ⋆b), and
a block diagonal matrix of matrices ⋆t is also denoted as
⋆a:b := diag(⋆a, ⋆a+1, . . . , ⋆b). To maintain consistency with
subsequent notations, we denote the distribution of V as
QU,Σ and its probability density function as q(V | U,Σ).

Now, an optimal control problem is formulated as

U∗ = argmin
U

EV∼QU,Σ

[
cT (xT ) +

T−1∑
t=0

ℓt(xt, ut)

]
(3)

where ℓt : Xt × Ut → R is the running cost function, and
cT : XT → R is the terminal state-dependent cost function.
Assuming that the running cost can be decoupled into a state-
dependent cost ct : Xt → R and a quadratic action-dependent
cost, the control objective can be rewritten as

cT (xT ) +

T−1∑
t=0

ℓt(xt, ut) = S(V ) +
λ

2
∥U − Uref∥2Σ−1 (4)

where Uref := uref,0:T−1 is the reference action sequence,
uref,t ∈ Ut is the reference action, λ ∈ R++ is the tem-
perature, and S(V ) := cT (xT ) +

∑T−1
t=0 ct(xt) is the state-

dependent cost associated with the state trajectory X := x0:T

following the transition model and the action sequence V .

As noted in [4], the optimal distribution Q∗ that provides
a lower bound for the control objective (4) is observed as

q∗(V ) ∝ exp

(
− 1

λ
S(V )

)
p(V ) (5)

where p(V ) := q(V | Uref ,Σ) is the base probability density
function. It implies that the optimal control problem (3)
can be solved by minimizing the Kullback-Leibler (KL)
divergence between the controlled distribution QU,Σ and the
optimal distribution Q∗ so that

U∗ = argmin
U

DKL (Q∗ ∥QU,Σ) (6)

which leads to a sampling-based optimization:

U∗ = EV∼Q∗ [V ] = EV∼Q̂[w(V )V ] (7)

where Q̂ is the sampling distribution, q̂(V ) := q(V | Û ,Σ)
is the sampling probability density function, and w(V ) :=
q∗(V )
q̂(V ) is the importance sampling weight. Importance sam-

pling is employed because directly sampling V from the
optimal distribution Q∗ is typically intractable. Notably, this
sampling-based optimization does not impose restrictions on
the structure of the sampling mean Û and covariance Σ.

The optimal distribution Q∗ derived from MPPI can also
be characterized using Bayesian inference:

q∗(V ) := p(V | oτ ) =
p(oτ | V ) p(V )

p(oτ )
(8)

where oτ ∈ {0, 1} is the optimality indicator of the trajectory
τ := (X,V ). In the context of the optimal distribution (5),
the base probability serves as the prior probability p(V ),
while the negative exponential of the state-dependent cost
S(V ) represents the likelihood p(oτ | V ).

III. TIME-CORRELATED MPPI

A notable challenge in sampling-based optimal control
is managing its noisy actions. While filtering can reduce
the noise, weak filters might be ineffective, and strong
filters can compromise performance or optimality. Adjusting
the sampling distribution offers an alternative, but incorrect
choices can lead to optimization failures. To address this, we
incorporate temporal correlation of actions into stochastic op-
timal control, ensuring smooth action sequences and sample
efficiency. The following subsections detail this approach.

A. Optimal control with dynamic extension

Before introducing the time-correlated approach, we first
define an optimal control with dynamic extension to obtain
smooth action sequences. In this context, an extended system
is defined as

xt+1 = ft(xt, v
(0)
t ) and v

(i)
t+1 = v

(i)
t + htv

(i+1)
t (9)

where v
(i)
t ∈ Rnu is the i-th derivative of the action, and ht

is the step size. Given a dynamic extension depth d ∈ Z+,
the new action v

(d)
t follows a normal distribution:

v
(d)
−d:T−1 ∼ Qde := N (u

(d)
−d:T−1, inv(R

(d)
−d:T−1)) (10)



where u
(d)
t ∈ Rnu is the mean input, and R

(d)
t ∈ Snu

++ is
the inverse covariance matrix. It is important to note that the
prediction horizon begins from −d rather than zero, since
v
(d)
−d influences the initial action v

(0)
0 , as shown in Fig. 1.

The control objective for the extended system is to find
the mean input u(d)

−d:T−1 that minimizes the expected value:

E
v
(d)
−d:T−1

∼Qde

[
Sde(v

(d)
−d:T−1) +

λ

2

T−1∑
t=−d

∥u(d)
t − u

(d)
ref,t∥

2

R
(d)
t

]

where Sde : Rnu(d+T ) → R is the extended state-dependent
cost, and u

(d)
ref,t ∈ Rnu is the reference for the d-th action

derivative, both of which will be detailed below. The optimal
probability density is then given by

q∗de(v
(d)
−d:T−1) ∝ exp

(
− 1

λ
Sde(v

(d)
−d:T−1)

)
× exp

(
−1

2

T−1∑
t=−d

∥v(d)t − u
(d)
ref,t∥

2

R
(d)
t

) (11)

where the second exponential term corresponds to the Gaus-
sian prior distribution of v(d)−d:T−1.

B. Time-correlated optimal control

While the optimal control with the extended system in
Section III-A can yield smooth action sequences, solving it
using sampling-based methods often demands more samples
or iterations due to the increased number of state variables.
To address this, we aim to revert the optimal distribution
(11) back into a distribution of the original action V . For
the transcription, we design the cost of extended states v

(i)
t

to be quadratic, resulting in an extended state-dependent cost:

Sde(v
(d)
−d:T−1)

:= S(v
(0)
−d:T−1) +

λ

2

d−1∑
i=0

T−1∑
t=−d

∥v(i)t − u
(i)
ref,t∥

2

R
(i)
t

(12)

where u
(i)
ref,t is the reference, and R

(i)
t ∈ Snu

+ is the positive
semi-definite gain matrix for v(i)t with i ∈ {0, 1, . . . , d− 1}.
Combining (11) and (12), we obtain a quadratic function
of v

(i)
t , with depths 0 ≤ i < d from the extended state-

dependent cost and i = d from the prior distribution.
To leverage the fact that action derivatives v

(i)
t can be

represented as finite differences of the action vt, we define
differentiation operators:

D
(1)
a:b := diag(h−1

a , h−1
a+1, . . . , h

−1
b−1)

−1 1
−1 1

. . .
−1 1

 ,

D
(c)
a:b := D

(1)
a:b−c+1D

(c−1)
a:b , and D

(0)
a:b := Ib−a+1

(13)

which maps a scalar signal of length b − a + 1 to its c-th
derivative signal of length b− a− c+ 1. Action derivatives
are then represented as v(i)−d:T−1−i = D

(i)
−d:T−1 v−d:T−1 with

D
(i)
−d:T−1 := D

(i)
−d:T−1⊗Inu where Ia ∈ Ra×a is the identity

matrix, and ⊗ is the Kronecker product operator.
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Fig. 2. Example of the sampling distribution. Top: Columns of the
covariance square root matrix, forming the action sequence basis. Bottom:
Mean (red) and sampled (gray) action sequences. An artificial noise is added
to the estimated optimal sequence (blue) to show the smoothing effect of
the gradient operator.

Using the differentiation operator (13), quadratic functions
of v(i)t , expressed as a sum of squares, can be written as

d∑
i=0

T−1−i∑
t=−d

∥v(i)t − u
(i)
⋆,t∥2R(i)

t

2
=
∥v−d:T−1 +H−1g⋆∥2H

2
+ C
(14)

H := +

d∑
i=0

(D
(i)
−d:T−1)

T R
(i)
−d:T−1−i D

(i)
−d:T−1 (15)

g⋆ := −
d∑

i=0

(D
(i)
−d:T−1)

T R
(i)
−d:T−1−i u

(i)
⋆,−d:T−1−i (16)

where H ∈ Rnu(T+d)×nu(T+d) is the Hessian, g⋆ ∈
Rnu(T+d) is the gradient, and C ∈ R is the scalar term. The
index ⋆ ∈ {ref, est} denotes either the prior or sampling
distribution, which will be elaborated on later. Although
some terminal actions v(i)T−i:T−1 are missing, these omissions
do not affect the original state and action sequences, as
shown in Fig. 1. Consequently, arbitrary values can be
assigned, such as v

(i)
T−i:T−1 = u

(i)
⋆,T−i:T−1.

It is worth noting that the reference u(i)
ref,t and the estimated

optimal u
(i)
est,t of extended variables do not need to adhere

the extended dynamics (9). These sequences can be arbitrary,
but typically u

(i)
⋆,t is chosen as the i-th derivative of u⋆,t or

zero. This choice results in gradient operators:

G⋆ := −
∑
i=I⋆

(D
(i)
−d:T−1)

T R
(i)
−d:T−1−i D

(i)
−d:T−1 (17)

where I⋆ is the index set. Then, the gradient can be obtained
as g⋆ = G⋆u⋆,−d:T−1. We select Iref = {0, 1, . . . , d − 1}
for the prior distribution and Iest = {0} for the sampling
distribution, though other choices are also possible.

By employing the Hessian (15) and gradient (16), we can
rewrite the extended optimal distribution (11) with the ex-



tended state cost (12) in terms of the original action sequence
v−d:T−1. However, the transcription causes a causality is-
sue because the action sequence includes previous actions
v−d:−1, which are beyond our control at the current time
step t = 0. To address this, we introduce a conditional distri-
bution given the previous action sequence u−d:−1. Consider
normal distributions v−d:T−1 ∼ N (−H−1g⋆, H

−1) which
corresponds to quadratic functions (14). Their conditional
distributions are expressed as V ∼ N (Ū ,H−1

tt ) and V ∼
N (Û ,H−1

tt ) where

Ū := −H−1
tt HT

htu−d:−1 −H−1
tt Gref,turef,−d:T−1 (18)

Û := −H−1
tt HT

htu−d:−1 −H−1
tt Gest,tuest,−d:T−1 (19)

are the mean of prior and sampling distributions. For the
sampling distribution, the estimated optimal action uest,t is
obtained from the previous optimization result. The sub-
scripts ⋆h and ⋆t denotes the head (i.e., ⋆−d:−1) and tail
(i.e., ⋆0:T−1) components. Accordingly, we have

H =

[
Hhh Hht

Hth Htt

]
and G⋆ =

[
G⋆,h

G⋆,t

]
(20)

where Hhh ∈ Rnud×nud, Htt ∈ RnuT×nuT , Hht =
HT

th ∈ Rnud×nuT are the inverse covariance components,
and G⋆,h ∈ Rnud×nu(d+T ), G⋆,t ∈ RnuT×nu(d+T ) are the
gradient operator components. Since V ∼ N (Û ,H−1

tt ) is
equivalent to V = Û + H

−1/2
tt E with E ∼ N (0, I), the

columns of the covariance square root matrix serves as a
basis for the random action sequence, capturing the temporal
correlation. Fig. 2 illustrates an example of the basis and
sampled actions.

Substituting the extended state-dependent cost (12) and
conditional distributions (18) and (19) to the optimal dis-
tribution (11), we obtain a time-correlated optimal control
problem and its optimal probability density:

q∗tc(V ) ∝ exp

(
− 1

λ
S(V )

)
exp

(
−1

2
∥V − Ū∥2Htt

)
(21)

where Ū ∈ RnuT and Htt ∈ RnuT×nuT are the mean and
inverse covariance of the prior distribution, and Q∗

tc is the
distribution of the optimal probability q∗tc(V ). In the context
of Bayesian inference (8), this reformulation transfers the
cost associated with extended variables to the prior distribu-
tion, thereby improving sample efficiency. The optimal U ,
which aligns N (U,H−1

tt ) with the optimal distribution Q∗
tc,

can be obtained by using a sampling-based optimization:

U∗ = EV∼Q∗
tc
[V ] = EV∼Q̂tc

[wtc(V )V ] (22)

where Q̂tc := N (Û ,H−1
tt ) is the sampling distribution,

q̂tc(V ) is the corresponding probability density function, and

wtc(V ) :=
q∗tc(V )

q̂tc(V )
∝ exp

(
− 1

λ
S(V ) + (Ū − Û)THttV

)
(23)

is the importance sampling weight.
The proposed method, referred to as time-correlated model

predictive path integral (TC-MPPI), is summarized in Al-
gorithm 1. It is important to note that once the time steps

Algorithm 1 Time-Correlated MPPI
Require: ft transition model, K number of samples, T

horizon length, d correlation depth, ht time step size, R(i)
t

action cost parameters, λ temperature parameter
Compute Htt, Hht, Gref,t, Gnom,t ▷ (15), (17) and (20)
Initialize Ū , Û
while task not done do
xinit ← getCurrentState() ▷ Estimate state
for k = 0 to K − 1 do

x0 ← xinit

Vk ∼ N (Û ,H−1
tt )

Sk ← 0
for t = 0 to T − 1 do
xt+1 ← ft(xt, vt)
Sk ← Sk + ct(xt)

end for
Sk ← Sk + cT (xT )
S′
k ← Sk + λ(Û − Ū)THttVk

end for
w0:K−1 ← getWeights(S′

0:K−1) ▷ (23)
U∗ ←

∑K−1
k=0 Vkwk ▷ (22)

setCurrentAction(u∗
0) ▷ Apply action

uref,−d:−1 ← (uref,−d+1:−1, uref,0)
uest,−d:−1 ← (uest,−d+1:−1, u

∗
0)

Uref ← getNextReferenceAction()
Uest ← getNextOptimalActionEstimate(U∗, h−1)
Update Ū , Û ▷ (18) and (19)

end while

and action cost parameters are specified, the Hessian and
gradient operators can be computed offline, reducing on-
line computational efforts. Furthermore, advanced techniques
commonly used in MPPI-like algorithms (e.g., incorporating
exploration samples or decoupling the action cost from the
temperature [4]), though not addressed in Algorithm 1, can
also be seamlessly integrated into our framework.

IV. RESULT

We evaluate the proposed method across various control
tasks to demonstrate its ability to generate smooth actions
while maintaining high performance. TC-MPPI is compared
with MPPI variants: the original MPPI [3], MPPI with a
Savitzky-Golay filter (SGF) [4], and smooth-MPPI (S-MPPI)
[15]. MPPI with dynamic extension (DE), presented in Sec-
tion III-A, is also tested to validate the influence of extended
dynamics. Refer to the simulation videos available at https:
//youtu.be/nWfJ2MAV2JI. All algorithms are implemented
in MATLAB and tested on a Windows 11 machine with
AMD Ryzen 5 3600X CPU and 16GB RAM. The control
frequency is set to 100Hz, with a prediction step size of
0.05 s. Our method adapts to the difference between control
frequency and prediction step size using ht = 0.01 s for
−d ≤ t < 0 and ht = 0.05 s for 0 ≤ t < T . Advanced
techniques such as exploration samples and temperature
decoupling are not employed for simplicity.

To ensure fairness, the state-dependent cost, temperature,
horizon length, and sample sizes are kept the same across

https://youtu.be/nWfJ2MAV2JI
https://youtu.be/nWfJ2MAV2JI


TABLE I
SUCCESS RATE AND TERMINAL ERROR OF SWING-UP TASKS

Method Pendulum swing-up Cart-pole swing-up

Success Error (deg) Success Error (deg)

MPPI 50/50 0.46± 0.32 50/50 0.36± 0.28
MPPI w/ SGF 50/50 0.33± 0.25 50/50 0.27± 0.21

S-MPPI 30/50 5.62± 3.96 50/50 0.22± 0.18
MPPI w/ DE 20/50 6.33± 4.47 0/50 73.88± 52.62

TC-MPPI 50/50 0.31± 0.22 50/50 0.18± 0.13
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Fig. 3. State errors and action change rates for stabilizing tasks. High
action rates indicate high action noise. To account for varying scales across
tasks, the values are normalized so that MPPI values are set to 1. Scaled
errors exceeding 30 are not shown.

all algorithms. Specifically, we use horizon lengths of 40,
20, 20, 20, and 40 and sample sizes of 50, 200, 100,
100, and 100 for the pendulum, cart-pole, 2D bicopter, 3D
quadcopter, and autonomous vehicle, respectively. To isolate
the effect of filters, MPPI and MPPI with SGF use the
same action covariance. Action derivative costs are set to
R

(1)
t , R

(2)
t , R

(3)
t = 0 and R

(4)
t = εR

(0)
t , where ε is tuned

within [10−7, 10−3] for MPPI with DE and [10−12, 10−8]
for TC-MPPI. Notably, increasing action derivative costs
results in smoother action samples but may restrict action
exploration and responsiveness to unexpected disturbances.

Table I summarizes success rates and errors for the
pendulum and cart-pole swing-up tasks. Success is defined
as achieving a root-mean-squared error (RMSE) within a
specified threshold during the final 1 s of scenarios that
last between 10 s to 20 s. Fig. 3 shows RMS state errors
and action change rates for stabilizing tasks. With small
sample sizes, MPPI with SGF often outperforms MPPI
without filters, as the filter can mitigate action variance.
However, SGF can also degrade performance by violating the
solution optimality. S-MPPI effectively reduces action noise
and improves performance, but it may result in higher errors
if the sample size is insufficient relative to problem complex-
ity. MPPI with DE produces smooth actions yet sacrifices
control performance, often leading to failures. In contrast,
TC-MPPI remarkably reduces action noise and achieves
lower errors, demonstrating its ability to smooth actions
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Fig. 4. State and action for the pendulum swing-up task using TC-MPPI.
The resulting actions are smooth and effectively accomplish the task.
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Fig. 5. Average state cost ct(xt) for the pendulum swing-up task. TC-
MPPI achieves action smoothing without compromising performance.

without compromising performance. While performance is
not our primary objective, TC-MPPI yields better results by
improving action variance and sample efficiency. In practice,
action smoothness would also be beneficial with unmodeled
high-frequency dynamics, though it is not considered in
simulations. The following subsections detail each platform.

Pendulum: An actuated pendulum, or single-link manipu-
lator, is a good test case for evaluating algorithms. The state
includes the joint angle and angular rate xt := (qt, q̇t) ∈ R2,
and the action is the joint torque ut := τt ∈ R. The pendulum
has a mass of 1 kg, a length of 1m, and a maximum torque
of 4Nm, which is insufficient to swing-up the pendulum in
a single action. In the swing-up task, initial joint angles are
randomly selected, and success is defined as achieving a joint
angle RMSE below 5◦. Fig. 4 illustrates an example of the
state and action during swing-up, while Fig. 5 shows the state
cost. TC-MPPI achieves a joint angle RMSE of 0.37◦ in the
steady-state using a state cost ct := ∥xt∥2diag(1,0.1). Refer to
Table I and Fig. 3 for a comparison of control performance
and action noise against other algorithms.

Cart-pole: A cart-pole, which is under-actuated and un-
stable, is another valuable test case. The state includes the
cart position, pole angle, cart velocity, and pole angular rate



-1 0 1

-1

0

1

t = 0

-1 0 1

-1

0

1

t = 1

-1 0 1

-1

0

1

t = 2

-1 0 1

-1

0

1

t = 3

-1 0 1

-1

0

1

t = 4

-1 0 1

-1

0

1

t = 10

Fig. 6. Snapshots of the cart-pole swing-up task using TC-MPPI. The cart force (magenta) and the pole tip trajectory (blue) are shown. As the cart
force is constrained, it adjusts the force direction to swing-up the pole, ultimately balancing at the origin.

xt := (pxt , θt, ṗ
x
t , θ̇t) ∈ R4, and the action is the horizontal

cart force ut := ft ∈ R. The system parameters are: cart
mass 0.5 kg, pole mass 1 kg, pole length 1m, maximum
force 5N, and rail length 4m. In the swing-up task, initial
cart positions and pole angles are randomly selected from
uniform distributions. Success is defined as achieving a
position RMSE within 10 cm and an angle RMSE within 5◦.
Fig. 6 provides snapshots of the swing-up process. TC-MPPI
achieves a cart position RMSE of 2.74 cm and pole angle
RMSE of 0.21◦ in the steady-state using a state-dependent
cost ct := ∥xt∥2diag(5,10,0.1,0.1).

2D bicopter: The state of a 2D bicopter includes the body
pose and spatial velocity xt := (pt, θt, ṗt, θ̇t) ∈ R6, with
thrust forces ut := ft ∈ R2 as the action. The model param-
eters are based on [16]. For hovering and trajectory tracking,
TC-MPPI achieves position RMSEs of 2.09 cm and 2.81 cm
using a state cost ct := ∥xt−xref,t∥2diag(5,5,1,0.5,0.5,0.1). The
tracking reference is a vertical circular trajectory at 1m/s.

3D quadcopter: The state of a 3D quadcopter includes
the body pose and spatial velocity xt := (pt, Rt, vt, ωt) ∈
SE(3)×R6, and the action is the thrust forces ut := ft ∈ R4,
based on the dynamics from [16]. The sampling covariance
is set to a low value to account for the small yaw moment
coefficient. For hovering and trajectory tracking tasks, TC-
MPPI achieves position RMSEs of 8.24 cm and 9.37 cm
where the tracking reference is a horizontal circular trajectory
at 1m/s. The state cost is defined as ct := ∥(ep,t, ėp,t)∥2 +
∥(eR,t, eω,t)∥2diag(0,0,10,0,0,10) where ep,t := pt−pref,t is the
position error, eR,t := log(RT

ref,tRt)
∨ is the rotation error,

and eω,t := ωt −RT
t Rref,tωref,t is the angular rate error.

Autonomous vehicle: In an autonomous vehicle, the state
is defined as the position, orientation, velocity, yaw rate,
and front wheel speed xt := (pt, θt, ṗt, θ̇t, wF,t) ∈ R7. The
action consists of the front wheel angular acceleration and
steering angle ut := (ẇy

F,t, δF,t) ∈ R2. The vehicle has a
mass of 1100 kg, a wheelbase of 2.35m, a maximum wheel
acceleration of 30 rad/s2, and a maximum steering angle
of 30◦. We use a dynamic bicycle model with tire forces
modeled by simplified Pacejka magic formulas [17]:

fx
j = fz

j Dx sin(Cx arctan((1− Ex)Bxκj + Ex tanBxκj))

fy
j = fz

j Dy sin(Cy arctan((1− Ey)Byαj + Ey tanByαj))

where (fx
j , f

y
j , f

z
j ) ∈ R3 is the tire force, κj , αj are the slip

ratio and slip angles, j ∈ {F,R} is the front and rear tire in-
dex, and Bx = 10, Cx = 1.9, Dx = 1, Ex = 0.97, By = 10,
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Fig. 7. Trajectory of autonomous vehicle circuit tracking using TC-MPPI.
Vehicle speed is shown with a color map. The vehicle starts at the origin
with zero velocity, accelerates to the desired velocity, and slows down at
corners to prevent slip and collision.

Cy = 2.5, Dy = 1, Ey = 1 are tire coefficients. For trajec-
tory tracking, TC-MPPI achieves position RMSE of 9.69 cm
using ct := ∥xt − xref,t∥2diag(1,1,1,1,1,5,0). Circuit tracking
is conducted using ct := (50000 + 50Dcoll(xt)) Icoll(xt) +
∥vB,t − vB,des,t∥2diag(0.1,0.5) where Dcoll : R7 → R+ is
the collision distance function, Icoll : R7 → {0, 1} is the
collision indicator, vB,t ∈ R2 is the vehicle velocity in the
body frame, and vB,des,t = (20, 0)m/s is the desired body
velocity. Trajectory and velocity of the circuit tracking task
are visualized in Fig. 7.

V. CONCLUSION

In conclusion, we propose a sampling-based control algo-
rithm that generates smooth action sequences. Our approach
incorporates temporal correlation of actions in stochastic
optimal control, which is equivalent to applying a quadratic
cost on action derivatives. The sampling distribution is
then derived as a conditional Gaussian distribution, enabling
smooth action generation without requiring post-processing
or additional state variables. We validate the proposed
method through simulations on various platforms, including
a pendulum, cart-pole, 2D bicopter, 3D quadcopter, and
autonomous vehicle. The results demonstrate a significant re-
duction in action noise while improving overall performance.
Future research directions include conducting hardware ex-
periments, analyzing the effect of correlation parameters,
quantifying robustness against unexpected disturbances and
communication delays, integrating fast simulators [18], and
extending our time correlation approach to other sampling-
based methods [19], [20].
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